4th FPLO Workshop in Dresden

(April 1, 2005)

CPA approach: On Heavy Carbon Doping of MgB2

UC Davis

Deepa Kasinathan **Kwan-Woo Lee**

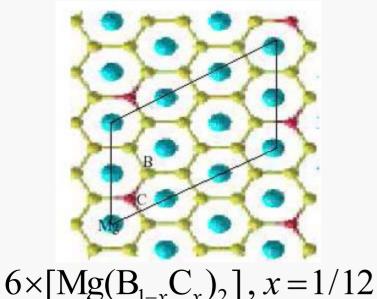
Warren E. Pickett

Acknowledgments: P.C. Canfield, L.C. Cooley, K. Koepernik, I.I. Mazin, and D.J. Singh

Outline

- Experimental data
- Calculational methods
- Smeared band structure
- CPA & Supercell calculation results
- VCA results
- \diamond σ hole concentration

Onclusion


Experimental data

- MgB₂: a real possibility for a high field conductor, due to high parallel and perpendicular critical fields
- $\otimes Mg_{1-v}Al_vB_2$:
 - 1. up to y=0.10, T_c decreases smoothly
 - 2. 0.10 < y < 0.25, two phase behavior (two *c* parameters)
 - 3. y=0.25, back to single phase with vanishing T_c
- $\otimes Mg(B_{1-x}C_x)_2$:
 - 1. $dT_c / dx = 1K / \% C$
 - 2. H_{c2} increases strongly with C content. (~33-35 T)
 - 3. It remains the 2-band gap superconductor for $10\pm2\%$ C substitution for B.

Calculational Method

LAPW (Wien2K)

- P.Blaha et al., Comput. Phys. Commun. <u>59</u>, 399 (1990)
- VCA (10% C doping)
- 2x3 Supercell method: ordered impurity calculation

FPLO

K. Koepernik and H. Eschrig, PRB <u>59</u>, 1743 (1999) http://www.ifw-dresden.de/agtheo/FPLO/

 Coherent Potential Approximation (CPA): disordered (randomly substituted) alloy calculations

K. Koepernik, B. Velicky, R. Hayn, and H. Eschrig, PRB <u>55</u>, 5717 (1997)

CPA detail

Solution & Goal

- 1) determine the filling of the σ band hole states
- 2) obtain the broadening (and potentially splitting) of bands
- ♦ Doping level: $Mg(B_{1-x}C_x)_2$

x	Goal
0.0001	"perfect crystal" reference for evaluation of the numerical algorithms in CPA
0.0833	to compare with $x=1/12$ supercell calculation
0.10 & 0.20	Representative of the system toward the achievable upper range

- *k*-mesh: 45x45x10 (1152 irreducible *k*-point)
- Valence orbitals: 2s2p3s3p3d (Mg), 2s2p3d (B&C)

Smeared band structure (Bloch spectral density)

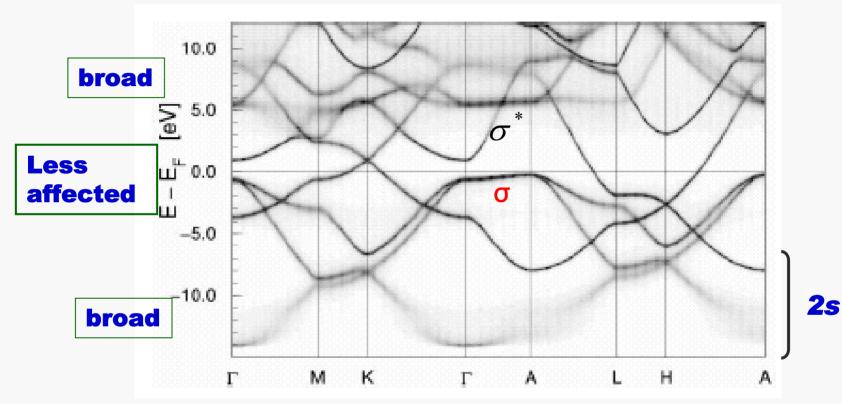
For ordered single particle spectra,

$$A_{k}^{bl}(\omega) = \sum_{n} \delta(\omega - \varepsilon_{kn})$$

(*if* $\omega = \varepsilon_{kn}$, black dot
otherwise, white) \Rightarrow usual band struture

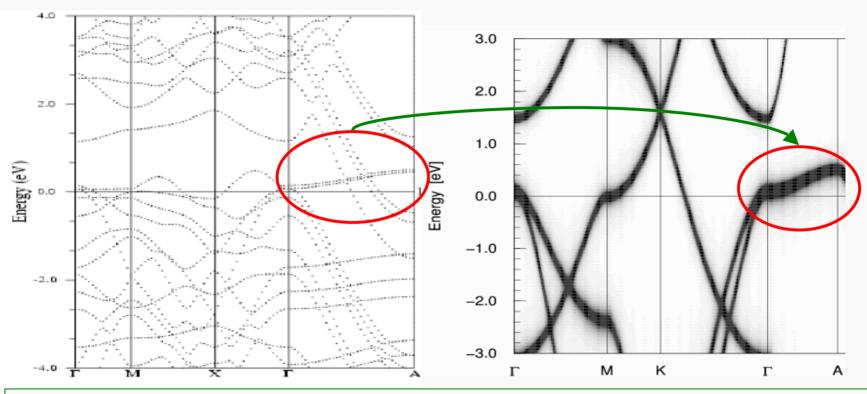
In disorder case,

$$A_{k}^{bl}\left(\omega\right) = Tr\left(S\left(k\right)\Gamma\left(k,\omega\right)\right)$$

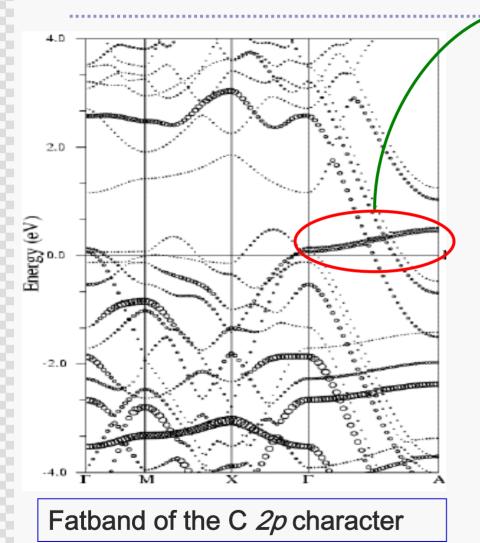

where S(k): overlap matrix

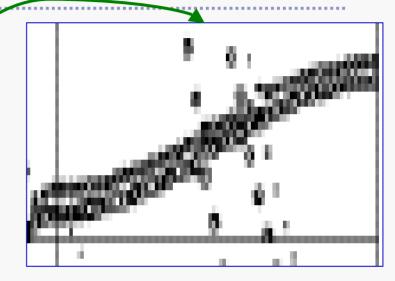
 $\Gamma(k,\omega)$: nonstochastic nonlocal coherent Green function

Iarge A : dense darkness small A: light


intermediate region: continuous gray gradients

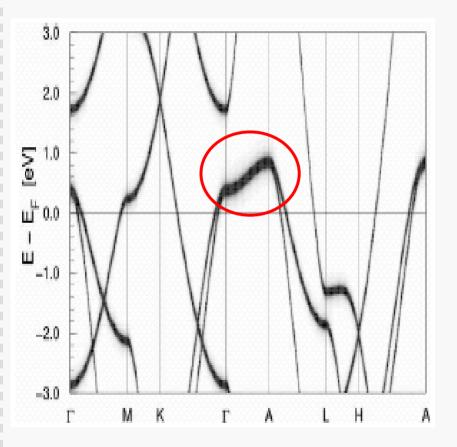
CPA | (x = 0.20)


- Largest broadening (2s): C 2s state is noticeably lower in energy leading to increased smearing.
- ♦ Near E_F, less affected by the chemical disorder.
- ♦ The σ band holes are completely filled.
 ⇒ The two-gap superconductivity disappears.


2x3 Supercell & CPA (x=1/12)

- C substitution
- 1. a change in the average potential in the B-C layer
- 2. the breaking of symmetry by C replacement of B in the supercell
- the splitting of the σ bands along $\Gamma\text{-}A$ by 60 meV

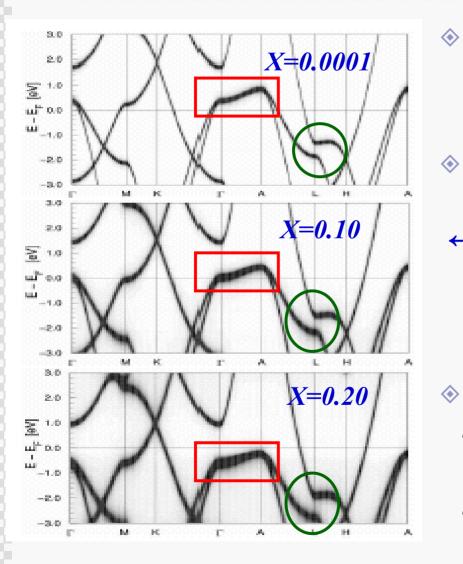
continued



• Lower band is pulled down due to the stronger potential of the C atom than that of the B atom.

• The splitting provides an energy scale for σ -band broadening $\gamma_0 \approx 7$ meV/%C.

CPAll (*x=0.0001***)**

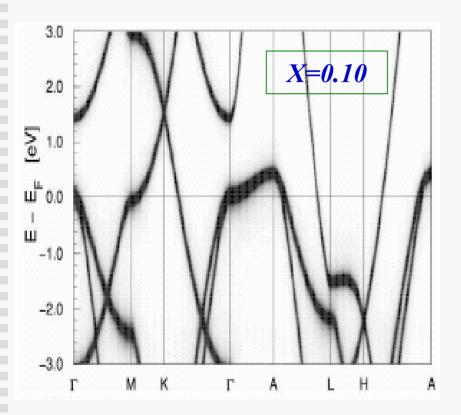

Since the numerical algorithms cannot reproduce the δ-function bands for $x → \theta$, it is included as a reference for the algorithmic contribution to the width.

Width:

algorithmic contribution

- + disorder effect
- + (order effect)

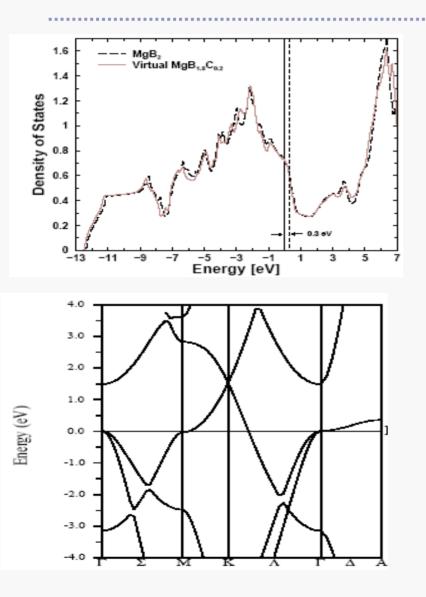
CPA III (Width of σ band)


 $\delta E_F = -0.4 \text{ eV for } x = 0.10$ -1.0 eV for x = 0.20

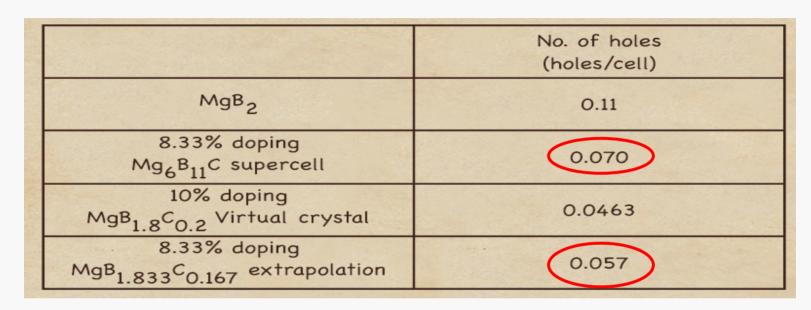
- The band shift is not entirely rigid.
- The two valence bands at the L point split apart and broaden with increasing C.

 \diamond averaged $\gamma \approx 0.21 \text{ eV}$

- 0.06 eV from the B/C onsite energy difference
- 0.15 eV from disorder itself


CPA IV (mean free path)

The width corresponds to a \diamond width in wavevector given by $\gamma = v_F \delta k$. $\therefore l_F = 2\pi v_F / \gamma$ At x=0.10, l_F may vary \diamond considerably over the FS due to the anisotropy of the \mathcal{V}_F . \diamond At Γ , the cylinder radius


- shrunk to a point and the very small z-component of \mathcal{V}_F .
- ⇒ a very small l_F in the zdirection of the order of the layer spacing c.

VCA (*x*=0.10)

- 1% increase in the occupied bandwidth
- The raising of E_F by
 0.3 eV
- The cylindrical FS radii of the σ bands at Γ vanish.
- ⇒ corresponding to a topological transition

σ hole concentration

- Both the σ band FS are still intact, consistent with the 2-band superconductivity with substantial T_c as seen in experiments.
- ♦ VCA is not reliable for substitutional C.
 - \Rightarrow C cannot be thought simply as "B + e¯".

Conclusion

- The σ band holes begin to disappear rapidly for x > 0.10.
- CPA reproduces the σ filling well, while VCA overestimates it.
- The largest disorder occurs in the 2s region in the lower valence band.
- As the σ band fills, there will be very strong deviation from "business as usual" in the coupled el.-ph. system.
 (The strength of coupling of bond-stretching modes with Q < 2k_F continues to increase.)
- $Mg(B_{1-x}C_x)_2$ as well as $Mg_{1-x}Al_xB_2$ is a good system to study the evolution of the unusual el.-ph. Coupling character.