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Competing phases, strong electron-phonon interaction, and superconductivity in elemental
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The observed “simple cubic” �sc� phase of elemental Ca at room temperature in the 32–109 GPa range is,
from linear-response calculations, dynamically unstable. By comparing first-principles calculations of the
enthalpy for five sc-related �nonclose-packed� structures, we find that all five structures compete energetically
at room temperature in the 40–90 GPa range, and three do so in the 100–130 GPa range. Some competing
structures below 90 GPa are dynamically stable, i.e., no imaginary frequency, suggesting that these sc-derived
short-range-order local structures exist locally and can account for the observed �average� “sc” diffraction
pattern. In the dynamically stable phases below 90 GPa, some low-frequency phonon modes are present,
contributing to strong electron-phonon coupling as well as arising from the strong coupling. Linear-response
calculations for two of the structures over 120 GPa lead to critical temperatures in the 20–25 K range as is
observed, and do so without unusually soft modes.

DOI: XXXX PACS number�s�: 74.62.Fj, 61.50.Ah, 64.30.Ef, 74.70.Ad

I. INTRODUCTION

One of the most unanticipated developments in supercon-
ducting critical temperatures �Tc� in the past few years has
been achievement of much higher values of Tc in elemental
superconductors by the application of high pressure, and that
these impressive superconducting states evolve from simple
metals �not transition metals� that are nonsuperconducting at
ambient pressure. The first breakthrough arose in Li, with Tc
approaching1,2 20 K, followed by yttrium3,4 at megabar pres-
sure also superconducting up to 20 K and showing no sign of
leveling off. Both of these metals have electron-phonon �EP�
coupled pairing, according to several linear-response
calculations5–8 of the phonon spectrum, EP coupling �EPC�
strength, and application of Eliashberg theory. These impres-
sive superconductors have been surpassed by Ca, with Tc as
high as 25 K reported9 near 160 GPa. Perhaps more unusual
is the report, from room-temperature x-ray diffraction
�XRD�, of a simple cubic �hence far from close-packed�
structure over a volume reduction of 45→30% �32–109
GPa�. Whether these two unique phenomena are connected,
and in what way, raises fundamental new issues in an area
long thought to be well understood.

Face-centered cubic �fcc, Ca-I� at ambient pressure, cal-
cium transforms at room temperature to body-centered cubic
�bcc, Ca-II� at10 20 GPa, is identified as simple cubic �sc,
Ca-III� in the very wide 32–109 GPa range as mentioned
above and shows additional phases �Ca-IV, Ca-V� at even
higher pressures. A sc structure for an element is rare, occur-
ring at ambient pressure only in polonium and under pressure
only in a handful of elemental metals.11,12 This identification
of a sc structure for Ca is particularly problematic, since it
has been shown by linear-response calculations of the pho-
non spectrum by a few groups13–15 that �at least at zero tem-
perature� sc Ca is highly unstable dynamically at all volumes
�pressures� in the region of interest. Since these calculations
are reliable for such metals, there are basic questions about
the “sc” structure itself.

II. COMPARISON TO RELATED METALS

Strontium, which is isovalent with Ca, like Ca supercon-
ducts under pressure and undergoes a series of structural
transitions from close-packed structure to nonclose-packed
structure at high pressure. Sr transforms from a fcc phase to
a bcc phase at 3.5 GPa and then transforms to Sr-III at 24
GPa, to Sr-IV at 35 GPa, and to Sr-V at 46 GPa.16 The Sr-III
structure was first believed to be a distorted sc and later
found to be an orthorhombic structure.17 However, later ex-
periments have found that there are two phases coexisting in
the Sr-III phase, namely, a tetragonal phase with a distorted
�-tin structure and an unidentified additional phase.17 The
Sr-IV structure is very complex and was shown recently to
be a monoclinic structure with the Ia space group and 12
atoms per unit cell.18 The structure is more complex in Sr-V
and was identified as an incommensurate structure similar to
that of Ba-IV.19 Sr begins to superconduct at 20 GPa, its Tc is
8 K at 58 GPa and is believed to be higher beyond 58 GPa.16

Scandium, with one more �3d� electron than Ca, under-
goes phase transitions from hcp to Sc-II at 20 GPa and to a
Sc-III phase at 107 GPa.4,20 Although Sc is conventionally
grouped together with Y and the lanthanide metals as the
rare-earth metals, due to their similarities in their outer elec-
tron configurations, its structural transition sequence is rather
different from the common sequence of lanthanide metals
and Y, which follow the pattern hcp→Sm−type→dhcp
→ fcc→ distorted fcc. The Sc-II structure is complex and
was recently found to be best fitted to a pseudo-bcc structure
with 24 atoms in the unit cell.20 The structure of Sc-III is not
identified to date. Sc begins to superconduct at 20 GPa. Its Tc
increases monotonically to 19.6 K with pressure to 107 GPa.
Its Tc drops dramatically to 8 K at the phase transition from
Sc-II to Sc-III around 107 GPa.4

Considering the close relation of Sc and Sr to Ca in the
periodic table and the similar superconducting properties un-
der pressure, it could be expected that Ca under pressure
should have more complex structures, rather than the ob-
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served sc structure. In fact, Olijnyk and Holzapfel10 observed
that their Ca sample transformed from sc to an unidentified
complex structure at 42 GPa.

So far the higher pressure phases Ca-IV and Ca-V have
attracted the most attention, and considerable progress has
been made in identifying these phases through a combination
of experimental9,21,22 and theoretical23–25 work. However,
satisfactory agreement between experimental and theoretical
work is still lacking. Ca-IV is identified as a Pnma space
group by Yao et al.23 but P43212 symmetry by Ishikawa et
al.24 and Fujihisa et al.22 Ca-V seems clearly to have a Cmca
space group,22–24 however, the calculated enthalpy in the
Pnma structure is much lower than in other structures �in-
cluding Cmca structure� at pressures over 140 GPa. Also in
the experimental work of Fujihisa et al.,22 the fitting of their
XRD patterns to the anticipated P43212 and Cmca space
groups were not satisfactory and other possibilities still exist.
In the recent work of Arapan et al.,25 an incommensurate
structure similar to Sr-V and Ba-IV structures was proposed
for Ca-V phase. Therefore the nature of the Ca-IV and Ca-V
phases is still not fully settled.

While helping to forge an understanding the structure of
Ca-IV and Ca-V and its impressive superconducting Tc is
one goal of the present work, our focus has been to under-
stand the enigmatic sc Ca-III phase where relatively high Tc
emerges and increases with pressure, a phase that XRD at
room temperature �TR� identifies as primitive simple cubic.21

In this pressure range sc Ca becomes favored over the more
closely packed fcc and bcc structures, but the dynamical
�in�stability was not calculated by Ahuja et al.26 We report
here first-principles calculations of the enthalpy of five crys-

tal structures �with space groups sc, I4̄3m, P43212, Cmca,
and Pnma�, and linear-response calculations of EPC, that
helps to clarify both the structural and superconducting ques-
tions.

III. THEORETICAL APPROACH

A. Competing structures

The most unstable modes of sc Ca are transverse �001�-
polarized zone boundary modes along the �110� directions. A
linear combination of the eigenvectors of this mode at differ-
ent zone boundary points leads to a body-centered four-atom

cell in the space group I4̄3m, whose local coordination is
shown in the cubic cell in the inset of Fig. 1, and has a clear
interpretation as a buckled sc lattice. This structure, when
relaxed, has no dynamical instabilities.

The I4̄3m structure is just one kind of distortion from the
sc structure. There are many kinds of other possible distor-
tions. Actually several other structures including Pnma,
Cmca, and P43212 were proposed for the high-pressure
Ca-IV and Ca-V phases.22–25 Their structural details are
listed in Table I and their structures are pictured in Refs.

22–24. I4̄3m is a body-centered cubic structure, Pnma and
Cmca Ca are orthorhombic, and P43212 has a tetragonal
symmetry. All are closely related to sc structure. For ex-

ample, I4̄3m turns to simple cubic if x=0.25 and the Cmca
structure becomes a sc structure if a=b=c and y=z=0.25.

B. Calculational methods

We have used the full-potential local-orbital �FPLO�
code,27 the full-potential linearized augmented plane-wave
�FPLAPW�+local orbitals method as implemented in
WIEN2K,28 the QBOX code29 and the PWSCF code30 to do vari-
ous structural optimizations and electronic-structure calcula-
tions, and check for consistency among the results. For the
enthalpy calculations we used the PWSCF code.30 Both QBOX

and PWSCF use norm-conserving pseudopotentials, while the
FPLO and WIEN2K codes are all-electron and full-potential
codes. The linear-response calculations of phonon spectra
and electron-phonon spectral function �2F��� were done us-
ing the all-electron, full-potential LMTART code.31,32

The parameters used in PWSCF for the structural optimiza-
tions and enthalpy calculations were: wave-function plane-
wave cut-off energy of 60 Ry, density plane-wave cut-off
energy of 360 Ry, k mesh samplings �respectively, number of
irreducible k points� 24�24�24 �455�, 32�32�32 �897�,
24�24�8 �455�, 24�24�24 �3614�, and 24�32�32

�6562� for sc, I4̄3m, P43212, Cmca, and Pnma structures,
respectively. Increasing the number of k points lowers the
enthalpy by only 1–2 meV/Ca almost uniformly for all struc-
tures, resulting in negligible change in volume, lattice con-
stants, and internal coordinates. In these calculations, we
used a Vanderbilt ultrasoft pseudopotential33 with
Perdew-Burke-Ernzerhof34 �PBE� exchange-correlation
functional and nonlinear core correction, which included
semicore 3s3p states as well as 4s3d states in valence states.

IV. ENTHALPIES

We have calculated enthalpy H�P� curves for each struc-
ture in the pressure range 40–220 GPa based on density-
functional methods35,36 using the PWSCF code.30 Several en-
ergy differences and relaxations were checked with the

FIG. 1. �Color online� Local coordination of the five structures
of Ca, plotted as number of neighbors versus the distance d relative
to the cubic lattice constant asc with the same density. The inset

shows the unit cube of the I4̄3m structure �which contains two
primitive cells�; this structure retains six near neighbors at equal
distances but three different second neighbor distances. The P43212
and Pnma structures can be regarded to be seven coordinated, albeit
with one distance that is substantially larger than the other six.
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QBOX,29 FPLO,27 and WIEN2K �Ref. 28� codes. In the 40–70
GPa range, all five of the structures we have studied have
enthalpies that differ by less than 20 meV/Ca �230 K/Ca�, as
shown in Fig. 2. In the 80–100 GPa range, the P43212 phase
is marginally the more stable phase. Three phases are degen-
erate, again within 20 meV/Ca, in the 100–130 GPa region
and are almost exactly degenerate around 110–115 GPa.
Thus at room temperature all five phases, including the sc
one, are thermodynamically accessible up to 80–90 GPa,

above which the sc and I4̄3m structures become inaccessible.
The other three phases remain thermally accessible to 130
GPa. Above 140 GPa, the Pnma phase becomes increasingly
more stable than the others.

Our results agrees well with the results reported recently
by Yao et al.23 and Ishikawa et al.24 in their corresponding
pressure range. At low pressure, our result is apparently dif-
ferent from the result by Arapan et al.25 In their results, sc Ca
has the lowest enthalpy from 40 to 77 GPa, lower than the
P43212 and Cmca structures. A possible reason is that the
authors might not have taken into account the change in
shape and internal coordinates of the Cmca structure in the
70–80 GPa pressure range. In our calculation, b /a=1.0003
and internal coordinates y=0.254 and z=0.225 at 70 GPa
�and similarly below� change dramatically to b /a=1.0594,
y=0.349, and z=0.199 at 80 GPa �and similarly above�.

Although equally dense, quasidegenerate, and related to
the sc structure these structures differ in important ways
from the sc structure and each other. In Fig. 1 the distribution
of �first and second� neighbor distances d, relative to the sc
lattice constant asc, are pictured. The collection of distances

cluster around d /asc�0.97–1.05 and, more broadly, around
�2. In an ensemble of nanocrystallites of these phases, the
radial distribution function in the simplest picture should
look like a broadened version of the sc one. For Ca the actual
microscopic configuration at room temperature, where fluc-
tuations �spacial and temporal� can occur among these
phases �whose enthalpies differ by less than kBTR per atom�,
will no doubt be much more complex. However, this simplis-
tic radial distribution plot makes it plausible that the result-
ing thermal and spatial distribution of Ca atoms will produce
an XRD pattern more like simple cubic than any other
simple possibility. Teweldeberhan and Bonev15 have noted
the near degeneracy of some of these phases in the 40–80
GPa region, and suggest that the T=0 structure is Pnma in
the 45–90 GPa range, which is consistent with our results if
the P43212 structure is not included.

V. STABILITY AND LATTICE DYNAMICS

The structural stability of the �quasidegenerate� structures
we have studied provide insight into behavior of Ca under
pressure. Linear-response calculations were performed using
the LMTART code31,32 to evaluate EPC.

60–100 GPa. The I4̄3m and Pnma structures are mostly
dynamically stable from 60–100 GPa according to our linear-
response calculations, but there are very soft zone boundary
modes that verge on instability �small imaginary frequencies�
at some pressures. The Cmca and P43212 structures are un-
stable over this entire pressure range; note that their struc-
tures are close to the sc structure. However, they are close to
stable with very soft phonons at 100 GPa, where they were
distorted far enough from the sc structure.

A rather common feature among these structures in this
pressure range is softening of modes at the zone boundary,
with associated low-frequency weight in the spectral func-
tion �2��� that can be seen in Figs. 3 and 4. Such low-
frequency weight contributes strongly to �, though the con-
tribution to Tc is better judged7 by ���� or even ��2��. With
increase in pressure, the peaks move toward lower frequency,
� increases, and the structures approach instability. These
results are consistent with the changes in structure param-
eters we obtain in the process of calculating the enthalpies,
where all four structures evolve further from the sc structure
with increase in pressure.

Above 100 GPa. At the highest pressures studied �by us,
and experimentally�, the crystal structures deviate more
strongly from the sc structure. Of the structures we have
considered, the P43212 one becomes favored and also is

TABLE I. Detailed structural data of the I4̄3m, Pnma, Cmca, and P43212 Ca. �SG: space group; WP:
Wyckoff position; and AC: atomic coordinates.�

SG No. WP AC x y z

I4̄3m 217 8c �x ,x ,x� �0.2

Pnma 62 4c �x ,1 /4,z� �0.3 �0.6

Cmca 64 8f �0,y ,z� �0.3 �0.2

P43212 96 8b �x ,y ,z� �0 �0.3 �0.3
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FIG. 2. �Color online� Plot of the enthalpy H�P� of the four
distorted Ca structures relative to that for Ca in the simple cubic
structure. The inset gives an expanded picture of the 40–00 GPa
regime.
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structurally stable around 110 GPa. This stability is consis-
tent with the observed transition from the sc structure to the
Ca-IV structure at room temperature. The dramatic drop in
the electrical resistance at around 109 GPa is also consistent
with a transition from a locally disordered phase to a crys-
talline material.9

In the pressure range of 110–140 GPa, the P43212, Cmca,
and Pnma structures become quasidegenerate again. Linear-
response calculations of the Pnma structure at 120 GPa and
above and of the Cmca structure at around 130 GPa indeed
show strong coupling with ��1.0 in all the cases. Unlike
what was found below 100 GPa, there are no longer very
low-frequency phonons �see Figs. 4 and 5�. The coupling

strength is spread over frequency, peaking for mid-range fre-
quency phonons.

Another interesting feature arises in the �2��� curves,
which reveal that the coupling matrix elements become rela-
tively uniform across most of the frequency range �except
the uninteresting acoustic modes below 2 THz� at pressures
over 120 GPa in Pnma structure and at 130 GPa in Cmca
structure; this behavior is evident in Fig. 4 and especially in
Fig. 5 where the results for the Cmca structure at 130 GPa
are pictured. This characteristic is fundamentally different
from that below 100 GPa, discussed above.

At pressures over 140 GPa, the Pnma structure is clearly
favored in our calculation, and linear-response calculations
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FIG. 3. �Color online� Plot of �2F��� �lower panel�, �2���
�middle panel�, and phonon DOS �upper panel� of I4̄3m structure at
about 61, 71, 83, and 97 GPa. This regime is characterized by
strong coupling �2��� at very low frequency.
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at about 60, 85, 120, 160, and 200 GPa. The main trends are the
stiffening of the modes with increasing pressure, and the retention
of coupling strength �2��� over a wide frequency range.
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indicate the structure is dynamically stable. The overall re-
sults are evident in Fig. 4, which shows that the structures
remain stable �no imaginary frequencies� and the lattice stiff-
ens smoothly with increasing pressure, and Fig. 6 shows that
strong electron-phonon coupling persists and Tc remains
high. In this high-pressure range, the incommensurate struc-
ture proposed by Arapan et al.25 at pressure over 130 GPa is
also a possibility.

VI. COUPLING STRENGTH AND Tc

Figure 6 shows the calculated �, �=MCa��2��, and rms
frequency ��2�1/2 versus pressure for a few structures and
pressures. The calculated values of Tc are shown in the lower
panel, using two values of Coulomb pseudopotential ��

=0.10 and 0.15 that bracket the commonly used values and
therefore give an indication of the uncertainty due to the lack
of knowledge of the value of �� and its pressure dependence.

Results are provided for Ca in I4̄3m, Pnma, and Cmca struc-
tures at a few pressures up to 220 GPa. In elemental metals
and in compounds where coupling is dominated by one atom
type, � has often been useful in characterizing contributions
to Tc.

37 � increases with pressure monotonically by a factor
of more than 5 from 60 to 220 GPa. The coupling constant �
increases modestly up to 120 GPa then remains nearly con-
stant at �=1.2–1.4. As pointed out elsewhere,38 a dense zone
sampling is needed to calculate � accurately, so any small
variation is probably not significant. The increase in � be-
yond 120 GPa correlates well with the lattice stiffening �in-
crease in ��2�� in this pressure range.

The trend of the resulting Tc generally follows, but seems
to overestimate somewhat, the experimental values.9 For
Cmca structure at about 130 GPa, the calculated EPC
strength is �=1.2 and Tc=20–25 K �for the two values of
��� in very satisfactory agreement with the observed values
of Tc in this pressure range. For Pnma structure, Tc increases
rapidly in the 80–120 GPa region. At pressures above 120
GPa up to the maximum 220 GPa that we considered, the

EPC constant � is �1.2–1.4 and the calculated Tc increases
modestly from 25–30 K at 120 GPa to 30–35 K at 220 GPa.
Neither the structure dependence nor the pressure depen-
dence seems very important: the strong coupling and high Tc
is more the rule than the exception. Ca at high pressure may
be an excellent superconductor regardless of its structure.

VII. SUMMARY

Calculations of enthalpy versus pressure for five crystal-
line phases of Ca �simple cubic and four distortions from it�
indicate quasidegeneracy, with enthalpy differences small
enough that one might expect a locally disordered, highly
anharmonic, fluctuating structure at room temperature. Over
most of the 30–150 GPa range, we find at least three crystal
phases whose enthalpies indicate they will compete strongly
at room temperature. The sc phase itself is badly unstable
dynamically �at T=0�, but the observed sc diffraction pattern
can be understood as a locally noncrystalline, highly anhar-
monic phase derived from a spatially inhomogeneous and
dynamically fluctuating combination of these structures, with
most of them being straightforward distortions from the sc
structure. Such a scenario seems to account qualitatively for
the XRD observations of a sc structure.
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FIG. 6. �Color online� Upper panel: calculated electron-phonon

coupling constant �, �, and Tc of Ca in I4̄3m �empty symbols�,
Pnma �filled symbols�, and Cmca �crossing-line filled symbols�
structures at a few pressures. Lower panel: Tc calculated from the
Allen-Dynes equation, showing the dependence on the Coulomb
pseudopotential for which two values, ��=0.10 and 0.15 have been
taken.
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At pressures below 100 GPa, the quasidegenerate struc-

tures tend to have soft branches or occasionally lattice insta-
bilities, which are associated with strong electron-phonon
coupling. In the pressure range of 110–130 GPa three phases
�P43212, Cmca, and Pnma� again become quasidegenerate,
and again it seems likely there will be spacial and temporal
fluctuations between the structures. Of course other struc-
tures may come into play as well; Arapan et al.25 have pro-
posed that the Pnma structure competes with an incommen-
surate structure at high pressure.

As our other main result, we find that linear-response cal-
culation of the EPC strength and superconducting Tc ac-
counts for its impressive superconductivity in the high-
pressure regime and accounts in a broad sense for the strong
increase in Tc in the sc phase. At higher pressure beyond the
current experimental limit �i.e., 161 GPa�, Tc still lies in the
20–30 K range for some phases that we have studied. In fact
strong electron-phonon coupling seems to be present in sev-
eral phases across a substantial high-pressure range, although
we have no simple picture why such strong coupling should
arise. �The strong coupling in Li and Y likewise has no sim-
ply physical explanation.6,7� These results may resolve some
of the perplexing questions on the structure and record high
Tc for an element and should help in obtaining a more com-
plete understanding of the rich phenomena that arise in
simple metals at high pressure.

After submission of our manuscript, we became aware of
a study by Yao et al.39 They performed structural studies of
calcium in the range 34–78 GPa using metadynamics and
genetic algorithm methods. Their methods and results are
complementary to ours, with each approach providing its
own insights. Connections of their work to ours is evident,
for example, the I41 /amd structure they focused on is
slightly distorted from simple cubic, as are the structures that
we study. Since its enthalpy is within 20 meV/Ca of the
Pnma structure across this pressure range, their result is con-
sistent with our explanation of the observation of the simple
cubic diffraction pattern at room temperature. Their linear-
response calculations of electron-phonon coupling and the
resulting Tc are also consistent with the more extensive re-
sults that we present.
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