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Effects of strong interactions in a half-metallic magnet: A determinant quantum Monte Carlo study
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Understanding the effects of electron-electron interactions in half-metallic magnets (HMs), which have band
structures with one gapped spin channel and one metallic channel, poses fundamental theoretical issues as well
as having importance for their potential applications. Here we use determinant quantum Monte Carlo to study
the impacts of an on-site Hubbard interaction U , finite temperature, and an external (Zeeman) magnetic field
on a bilayer tight-binding model which is a half-metal in the absence of interactions, by calculating the spectral
density, conductivity, spin polarization of carriers, and local magnetic properties. We quantify the effect of U

on the degree of thermal depolarization, and follow relative band shifts and monitor when significant gap states
appear, each of which can degrade the HM character. For this model, Zeeman coupling induces, at fixed particle
number, two successive transitions: compensated half-metal with spin-down band gap → metallic ferromagnet →
saturated ferromagnetic insulator. However, over much of the more relevant parameter regime, the half-metallic
properties are rather robust to U .
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I. INTRODUCTION AND BACKGROUND

As a family of promising candidates for spintronics appli-
cation, half-metallic (HM) magnetic materials have attracted
much interest over the past two decades.1,2 de Groot et al.3

discovered HMs computationally and popularized the HM
possibility especially in Heusler and half-Heusler compounds.
The distinguishing characteristic of an HM is that at the
mean-field level the Fermi level for one spin direction falls
within a gap for the other direction, resulting in 100%
polarized conduction and obvious spintronics applications.
Motivated by the unusual magneto-optical properties, the
Heusler class of intermetallic materials provided the most
promising realizations of HM character. Thermal fluctuations
degrade spin alignment and thus destroy the ideal HM. In
addition, real material effects such as crystal imperfections can
couple spins and degrade the polarization; spin-orbit coupling
destroys the true HM. These phenomena can be minor at low
temperatures compared with the Curie temperature (which
ranges 500–730 K in the half Heusler family NiMnZ (z = Co,
Pd, Pt, Sb) Ref. 4 and can be higher), but because proposed
applications do not rely on 100% polarization, HMs remain
viable for near-future electronic devices.

A variety of experimental techniques, including positron
annihilation, spin-resolved photoemission spectroscopy, An-
dreev reflection, and nuclear magnetic resonance, have been
employed to assess the character and polarization level
of proposed HMs, often with less than definitive results.
Comparison is made with density-functional-theory (DFT)-
based electronic structure calculations, which still play the
dominant role in the specification of HMs and in the search
for additional HMs and for the even more exotic half-
metallic antiferromagnets.5–7 HMAFs, better characterized as
compensated HMs, have zero macroscopic moment so they
can provide additional functionalities. Known or strongly
anticipated HMs now span a diverse collection of materials
with different chemical and physical properties.

An important question about HMs, not yet well clarified,
is the impact of dynamic interactions (which lie beyond DFT

methods) on the character and the survival of the single-spin-
channel gap that defines the HM phase. One of the most
fundamental consequences of repulsive on-site interactions is
local moment formation and dynamics, the study of whose
effects in metals has a long history (Anderson impurities,
Kondo systems). Local moments in insulators are also rather
well studied and present a largely distinct set of issues (gap
states versus band resonances, magnetic activity).8 HMs,
especially in oxides, bring in all of these issues: Although
one spin is gapped, it is not electrically an insulator since
there is metallic screening, but the two-spin channels are
fundamentally distinct. There have now been a number of
studies, in particular by Chioncel and collaborators, that
indicate degradation of the HM gap—sometimes severely—by
electron-electron interactions. One general picture is that
interactions, typically pictured in terms of a magnetic polaron
formed by charge carrier-magnon binding, lead to tailing of
spectral density into the gap and sometimes to midgap states
that would substantially degrade performance as an HM device
component.

Another issue, not explicitly addressed to any great extent
in treatments of interactions, is the distinction between the two
types of HMs. The study of the fully polarized ferromagnet,
also referred to as a saturated ferromagnet, in which the
minority spin states are empty, extends back to the seminal
work of Edwards and Hertz.9 CrO2 is the simplest example of
this: high spin S = 1 Cr4+ has no occupied minority states.10

The “gap” in CrO2 is several eV wide, between occupied O 2p

states and the unoccupied minority 3d bands. For low-energy
considerations, dc transport, for example, minority spin states
are out of the picture. The more common HM involves d

states on either side of the gap as well as the continuum in the
metallic channel; The minority charge excitations are typically
narrowly gapped; in intermetallics a commonly occurring
value is ∼0.5 eV and even in oxides is rarely much greater.
In the saturated case, there are simply no minority charge
excitations to consider.

There have been several studies based on model
Hamiltonians.1,11–13 In particular, work based on the
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s-d exchange model predicted the existence of nonquasipar-
ticle (NQP) density of states near the Fermi level, which
(mathematically) arise from the branch cut of the self-energy
arising from electron-magnon interactions.1 Chioncel et al.
illustrated the coincidence between NQP states and the imag-
inary part of local spin-flip susceptibility in the framework of
the single-band Hubbard Hamiltonian and DMFT approach
(see below) where saturated ferromagnetism is stabilized by
the additional magnetic spin splitting mimicking the local
Hund rule.11 An effective spin Hamiltonian was derived to
account for the temperature and disorder dependence of the
magnetic properties of half-metallic double perovskites.12

Remarkably, Kondo screening was recently shown to stabilize
ferromagnetic order and further result in a half-metallic phase
with minority-spin gap in the Kondo lattice model with
antiferromagnetic coupling.13

The LDA + DMFT (local density approximation plus dy-
namical mean-field theory) approach that is becoming widely
used to treat strong interactions is not based on a model Hamil-
tonian, instead using LDA results as the noninteracting system
together with a self-interaction correction. This approach has
been applied by Chioncel and coworkers11,14,15 to evaluate the
effect of interactions on HMs. One of the most well-studied
intermetallic HMs, NiMnSb,16 was the first application of
this combined technique.11 The calculated spectral density
contained nonquasiparticle (NQP) states within the minority
gap, but above, rather than pinned to, the Fermi level, allowing
it to survive as an HM. However, further investigations of
NiMnSb and other Heusler alloys show that the magnetic
moment per formula unit, the NQP spectral weight, and
the total DOS are insensitive or only weakly sensitive11 to
correlation effects. In striking contrast, correlation effects
were found to play a vital role in zincblende VAs, which is
calculated to be a ferromagnetic semiconductor (i.e., gapped
in both spin channels) within LSDA or the generalized
gradient approximation GGA, but predicted to be a half-metal
ferromagnet due to band shifts produced by LSDA + DMFT.17

Strong correlation effects are also obtained in magnetite, which
is uncommon in HMs in having a majority-spin gap.18 In the
full Heusler compound Mn2VAl which is HM within LSDA,19

an LSDA + DMFT treatment of local interaction led to NQP
states within the gap but below the Fermi level,15 which would
not degrade spintronics-related properties. At present the
impact of interactions appears to be highly material specific.
However, the models and the treatment of the interactions
(always approximate in some way) has varied widely, so few
questions are truly settled.

The DMFT approach, which treats on-site interactions and
dynamics in detail, has the shortcoming of neglecting intersite
correlations. Hence spin waves, or even short-range spin
order, that still contain strong correlations between neighbors,
are replaced by identical but uncorrelated spin fluctuations
on each interacting site. It is unclear to what degree the
misrepresentation of these excitations may affect the character
of the interacting spectral density.

In this paper we investigate the survival (or not) and
character of HM phases based on a bilayer Hubbard model
with unequal interlayer hopping for the two-spin species.
This model allows a substantial parameter range in which the
noninteracting density of states (DOS) has a gap in only one

spin channel, and will be described in detail in the next section.
We note here that the layer index can be regarded equivalently
as an orbital or band index, so that the bilayer Hubbard
Hamiltonian provides a useful pedagogical link between single
orbital and multiorbital models.

In the case when the spin-up and spin-down band structures
are identical (i.e., in the absence of underlying magnetic order),
tuning of the interlayer hybridization in such bilayer models
has been demonstrated to drive a variety of quantum phase
transitions.20,47 For example, at half filling, the ground state can
have antiferromagnetic long-range order for small interlayer
(interband) hopping t⊥, and enter a disordered valence bond
phase with singlet correlations between electrons on two
layers, for large t⊥. Likewise, the system can evolve through
Mott insulating transitions21–23 as t⊥ is altered. In the doped
system, there is a topological reconstruction of the Fermi
surface, which modifies the spin fluctuations and changes the
superconducting gap symmetry.24 Adopting spin-asymmetric
interlayer hopping, our model introduces new avenues of
behavior to be illuminated.

II. MODEL AND METHODOLOGY

A. Previous work

Previous studies of HMs in the single-band Hubbard model
focused11 mostly on the limiting case of saturated ferro-
magnetism achieved through an external Zeeman magnetic
field B. With the underlying up- and down-spin bands being
degenerate, the effective spin chemical potentials μσ = μ ± B

are chosen to depopulate one of the species. An alternate way
to achieve a half metal, one in which the two-spin species can
still have the same population so that the polarization is zero,
is to alter the band structure so that a gap opens for just one
of the species (which we will choose to be the “down”-spins).
For example, in a one-band tight-binding model on a bipartite
lattice with band ε(k), one can incorporate an additional
staggered potential Vjσ = (−1) j Vσ , where the (−1) j has the
opposite sign on the two sublattices. This alternating potential
mixes momentum states k and k + π and opens up a gap in
the dispersion relation E(k) = ±√

ε(k)2 + V 2
σ . By choosing

V↑ = 0 and V↓ �= 0, for an appropriate choice of Fermi level,
the down-spin species is insulating while the up-spin species
is metallic.

Such a staggered potential, however, couples strongly to
antiferromagnetism since it provides a one-body energy which
favors an oscillating down-spin density on the two sublattices.
The dominant nature of the resulting magnetic response might
obscure the determination of the effect of U on the transport
properties. For example, for a half-filled square lattice Hubbard
model which has a divergent antiferromagnetic susceptibil-
ity χ0(π,π ), the additional staggered potential immediately
produces a state with long-range antiferromagnetic order
(LRAFO) which is “trivial” in the sense that it does not
arise from a spontaneous breaking of symmetry, but rather
from the externally imposed potential. This LRAFO opens
a Slater gap in the initially metallic up-spin spectrum, so
that U immediately, but in some sense trivially, destroys HM
behavior.
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B. Spin-asymmetric Hubbard model

We avoid this confusing aspect by considering instead the
slightly more complex case of a two-layer (or, equivalently,
two orbital) square lattice Hubbard model with spin-dependent
interlayer (interorbital) hopping,

Ĥ = −t
∑

〈ij〉mσ

(c†i mσ cjmσ + H.c.) −
∑
i mσ

(μ − σB)ni mσ

−
∑

iσ

t⊥σ (c†i1σ ci2σ + H.c.)

+U
∑
i m

(
ni m↑ − 1

2

)(
ni m↓ − 1

2

)
. (1)

Here the additional index m = 1,2 labels two layers (orbitals)
while i,j are site indices and σ is the spin. The first term is
an intralayer nearest-neighbor hopping. We consider a square
lattice with intralayer hopping t = 1 to set the energy scale. t⊥σ

is a spin-dependent interlayer (interorbital) hybridization, and
U is an on-site repulsion. The terms coupling to the density
are a spin-independent chemical potential μ and a Zeeman
field B. The repulsive on-site interaction term is written in
particle-hole symmetric (PHS) form so that at μ = B = 0 the
system is half filled (for each spin species), even if t⊥↑ �= t⊥↓.

The noninteracting limit U = 0 has two bands for each
spin,

ε−
σ (k) = −t⊥σ − 2t(cos kx + cos ky).

(2)
ε+
σ (k) = +t⊥σ − 2t(cos kx + cos ky).

For t⊥σ � 4t these two bands overlap, yielding metallic
behavior. However, for t⊥σ > 4t , Eq. (2) characterizes a
band insulator with gap 2(t⊥σ − 4t). Choosing one interlayer
hybridization to exceed 4t and the other to be less than
4t , this Hamiltonian, and choice of U = 0 band structure,
represents a half metal without polarization, and avoids the
externally imposed antiferromagnetism which would arise
from a staggered potential. The price paid is the introduction
of the extra layer (orbital) degree of freedom m. The Hubbard
Hamiltonian on a diamond chain is a one-dimensional analog
in which the interplay of perpendicular hopping and U can
create a correlation-induced half metal for certain fillings.25

The objective is to model interacting electrons in a ferro-
magnetic background of spins arising from states at higher
binding energy so they do not require dynamic modeling.
As has been done in previous treatments,1,11,14,15,17 we build
in the spin symmetry breaking (ferromagnetic order) into
the underlying noninteracting system. In our case it is by
using a spin-dependent interlayer hopping t⊥σ , which is the
simplest means of introducing a minority single-particle gap
in this model. In DMFT calculations11,14,15,17 (Introduction and
Sec. IV B) the spin asymmetry arises from the LSDA starting
point and, in some of the cases, from the separate response
functions arising from each spin channel. Heusler compounds,
which comprise most of the material-specific treatments,
provide examples26 where the majority and minority bands
near EF are simply different (due, for example, to differing on-
site energies and hoppings) rather than being Stoner-exchange
split as in ferromagnetic iron.
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FIG. 1. (Color online) Half-metallic behavior persists in the
presence of interactions: The down-species density of states is
virtually unaltered at U/t = 4 from its U/t = 0 value. Here t⊥↑ = 0
and t⊥↓ = 5 so that the down-species (only) has a noninteracting
band gap � = 2t . The up-species is metallic with a density of states
at the Fermi surface that is relatively insensitive to U . The lattice
size N = 8 × 8 in each layer and the inverse temperature β = 5.
The chemical potential and Zeeman fields μ = B = 0. However, due
to the particle-hole symmetry at half filling, there is no signature
associated with the NQP states.

C. Underlying magnetic order

The manner in which magnetic order (a fundamental
necessity for an HM) is built into the model may affect
behavior. In our model, magnetic order is implicit in the spin
dependence of t⊥σ but is otherwise unspecified. A signature
aspect of our model is that for U = 0 it is a specific realization
of the schematic symmetric HMAF DOS, presented, for
example, in Fig. 1 of Ref. 27. In their DMFT study of a fully
polarized Bethe lattice Hubbard model, Chioncel et al. used a
Zeeman field to mimic Hund’s rule coupling, thereby splitting
the two spin directions until the minority band was empty.11 In
LSDA + DMFT studies of suspected HM materials (NiMnAs,
FeMnSb, VAs), Chioncel and coworkers11,14,15 based their
dynamical corrections on the spin-split LSDA bands.

The goal of this paper is to determine the effect of
the electronic correlation term U in the model Hamiltonian
Eq. (1). Specifically, we compute the spin-resolved spectral
densities as functions of t⊥σ ,U , and temperature T . We also
study the interplay of U and interlayer hopping t⊥σ on the
antiferromagnetic correlations. For simplicity we will set
t⊥↑ = 0 and vary t⊥↓ so that spin-up fermions are metallic
and the spin-down fermions can be tuned from metal to band
insulator at t⊥↓ = 4t .

At the PHS point μ = B = 0, both spin species are half
filled (regardless of the values of U,t,t⊥ or temperature T ).
This immediately implies the polarization is identically zero,
so that our model system realizes the exotic half-metallic
antiferromagnetism (HMAF).5 Although there has been to
date no clear confirmation of novel HMAF materials, a variety
of candidates have been proposed, including La2VCuO6

28 as
a likely member of the double perovskite system with two
magnetic ions,6 semiconductors doped with dilute magnetic
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ions,29 and monolayer superlattices CrS/FeS and VS/CoS.30

An unusual semi-Dirac half-semimetal arises in untrathin VO2

films.31,32 Our model’s bands closely resemble the simplest
realization of an HMAF as arising from two exchange-split
ions that are antialigned, shown schematically and discussed
in Ref. 2. After considering the fundamental PHS case, we will
also present some results for nonzero Zeeman field B, where
the system can be expected to acquire nonzero polarization.

D. DQMC procedures

We treat the interaction using the determinant quantum
Monte Carlo (DQMC) technique.33,34 DQMC is a numerically
exact approach to solve interacting tight-binding electron
Hamiltonians like Eq. (1). In comparison with DMFT, DQMC
has the advantage of being able easily to incorporate and
measure magnetic, charge, and pairing correlations between
different spatial sites. On the other hand, DQMC has the
drawback of being formulated on finite spatial lattices so that
finite size effects must be assessed. DQMC also is limited
by the fermion “sign problem”35 (much more so than single
site DMFT) which prevents the acquisition of data at low
temperatures. Most of the results presented in this paper will be
for two 8 × 8 layers and inverse temperatures β = 6. We will
show that the sign problem is somewhat alleviated for Zeeman
field B �= 0 so that lower temperatures can be reached.

E. Properties to be studied

In order to distinguish metal from insulator, and see the
effect of U on the half metallicity, we will examine the single-
particle density of states, Nσ (ω). This quantity is obtained
by an analytic continuation of the local imaginary-time-
dependent Green’s function Gσ (τ ) = ∑

j〈T cjσ (τ )c†jσ (0)〉, that
is, by inverting,

Gσ (τ ) =
∫ ∞

−∞
dω

e−ωτ

e−βω + 1
Nσ (ω), (3)

using the maximum entropy method.36 Our focus will be on
the density of states at the Fermi surface Nσ (ω = 0) to see if
HM behavior survives at nonzero U .

Although the system has no net polarizaton at B = μ = 0
from the viewpoint of total up- and down-occupations, the
distinction between spin directions induces a polarization of
the conduction electrons, which is quantified by

P (EF ) = N↑(EF ) − N↓(EF )

N↑(EF ) + N↓(EF )
. (4)

This quantity has been the focus of much experimental work,
since HMs (at T = 0) have 100% polarization which is what
makes them so attractive for spintronics applications.

We also study the dc electrical conductivity σdc, which is
extracted from the current-current correlation function,


xx(k,τ ) =
∑

i

eik·l〈jx(l,τ )jx(0,0)〉, (5)

where jx(l,0) = it
∑

σ (c†l+x,σ clσ − c
†
lσ cl+x,σ ). The conductiv-

ity is obtained using the approximate form of the fluctuation-

dissipation theorem,37,38 valid at large β,


xx(k = 0,τ = β/2) = πσdc/β
2. (6)

The magnetic magnetic structure factor,

S(q) = 1

N

∑
l,j

eiq·(l−j)〈(nl↑ − nl↓)(nj↑ − nj↓)〉, (7)

is of interest as well. In the ordered phase the spin correlations
〈(nl↑ − nl↓)(nj↑ − nj↓)〉 are nonzero for large l − j and S(q)
grows linearly with the lattice size N at the appropriate
ordering wave vector q.

III. CHOICE OF PARAMETER RANGES

Most HM magnets investigated to date are at most moder-
ately correlated intermetallic compounds1 and DFT treatments
may be quite realistic. For instance, photoemission experi-
ments and resonant x-ray scattering has led to the estimate of
Hubbard interaction U = 2 eV for NiMnSb,39 while a Wannier
orbital analysis has shown that the bandwidth of the NiMnSb
bands crossing EF is W ∼ 4 eV. The ratio U/W ∼ 1/2 puts
this HM compound in the weakly to moderately correlated
regime. In our model system, the noninteracting bandwidth is
W = 8t at t⊥ = 0, which suggests U/t = 0 − 4 is the relevant
range to study.

Correlation effects of this size can fundamentally change
the physics of related tight-binding Hamiltonians, e.g., opening
a correlation gap or inducing AFLRO and a Slater gap; see, for
example, Ref. 40, and references therein. The near-neighbor
square lattice tight-binding model is unstable to arbitrarily
small U , although this sensitivity is a result of the van Hove
singularity (vHs) and perfect nesting of that model. The major-
ity channel in our model, however, retains these same features
(at μ = 0 only, of course); in the minority channel the vHs
are shifted to either side of μ = 0. Even with one remaining
vHs, we will show below that interactions play a much less
dramatic role when one spin channel is gapped.

There is, after all, new physics in an HM as well as the
new phenomena discussed in Sec. I: The new energy scale that
is given by the spin-down gap � = 2(t⊥,↓ − 4t). Down-spin
charge excitations are gapped by �, which make interactions
further differentiate the spins, for example, by enabling sharp
“impurity” states (only) within the spin-down gap. Spin-flip
interactions are gapped by the separation between μ (the up-
spin Fermi level) and the nearest down-spin band edge, which
is �/2 at μ = 0 in our model. Kondo processes vanish due
to the absence of low-energy spin-flip excitations. Perhaps
more relevantly, the vHs- and nesting-driven spin density wave
instability obviously will be quenched when there is a minority
gap. We show it is also suppressed in the ferromagnetic metal
phase where the minority bands are split but not gapped.

IV. EFFECT OF ON-SITE INTERACTION

A. DQMC results

The moderating of strong interaction effects is seen in the
density of states, shown in Fig. 1, where the insulating species
N (ω) at U/t = 4 is virtually indistinguishable from its U = 0
form. Here we have set t⊥↑ = 0 and t⊥↓ = 5t and μ = B = 0
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so that the down-spin species has a noninteracting band gap
� = 2(t⊥↓ − 4t) = 2t and the up-species is metallic. The gap
magnitude and tailing of states into the gap is unaltered up to
U = 4. The up- (metallic) species N↑(EF) is also constant from
U/t = 0 to U/t = 4 to within the accuracy of the maximum
entropy inversion of Eq. (3). The peaks in N↑(ω) away from
ω = 0 are affected by the finite size effect of the 8 × 8 lattice.

One distinguishing characteristic of interactions in HMs
extensively discussed in previous studies is the appearance of
the nonquasiparticle (NQP) states within the spectral gap—the
magnetic polaron effect. These NQP states in previous studies
have (1) appeared, at ω = 0, above ω = 0, and below ω = 0,
and (2) also possibly not appeared. In the generic picture, the
density of NQP states vanishes at the Fermi level (ω = 0) but
increases toward an energy scale of the order of the magnon
frequency, leading to an asymmetry of spectral function.1

Assisted perhaps by the particle-hole symmetry in our model
(implying the symmetry of spectral function) at half filling,
NQP states may be inhibited from appearing, and there is
no signature of NQP states in Fig. 1. The implicit nature of
magnetic order in our model may also play a role, but other
treatments have also incorporated some implicit origin of the
magnetic order in an HM.

The HM character can be expected to become more or less
evident in a property specific manner, and we now describe a
few examples. The relatively minor effect of on-site interaction
U is further evidenced by the behavior of the dc conductivity
in Fig. 2, where the interlayer coupling is varied to move the
system through the metallic phase t⊥↓ = 2, 3, through the
transition t⊥↓ = 4, to the HM phase t⊥↓ = 5. At t⊥↓ = 2
the conductivity is U dependent because N (ω → 0) in the
metallic phase has the underlying van Hove singularity there.
As U increases the t⊥↓ dependence weakens, and at t⊥↓ = 4 and
5, which is crossing over into the HM phase, σdc decreases and
becomes independent of the interaction strength: In the HM

0 0.5 1 1.5 2 2.5 3
U

0

0.5

1

1.5

2

2.5

3

3.5

4

σ dc

t⊥  =0
t⊥  =1
t⊥  =3
t⊥  =5

FIG. 2. (Color online) The dc conductivity for β = 6 is shown as
a function of U . For the half metal t⊥↓ = 5t , U has very little effect
on σdc, which is consistent with the invariance of the density of states
in Fig. 1. In a fully metallic phase t⊥↓ = 0 there is a clear decrease
of σdc with U due to the additional electron-electron scattering which
can occur when both species have nonzero density of states at the
Fermi surface.
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FIG. 3. (Color online) Staggered static structure factor SAF

through the metal-HM transition. Increasing interlayer coupling
reduces the increase with increasing U until, for half-metallic phase
t⊥↓ = 5, U has little effect on the (small) magnetic coupling. In
symmetric bilayers, large interlayers promote singlet formation,
which are suppressed here by the HM gap.

phase t⊥↓ = 5, σdc falls by less than 10% as U increases from
U = 1 to U = 3, and must be controlled solely by spin-up
processes.

Figure 3 demonstrates the correlation effects on the stag-
gered magnetic static structure factor, again for the progression
from metal to HM t⊥↓ = 2–5. The increase with U at small
interlayer coupling decreases as the HM phase is approached
and entered, and the variation of SAF with U in the HM phase
t⊥↓ = 5 is quite small. It is unlikely that antiferromagnetic
long-range order will arise at lower temperatures, and it
is known that, in the case of spin-independent interlayer
hybridization, t⊥ drives a competing singlet ground state, with
a quantum critical point at t⊥ ∼ 1.6 above which the ground
state of the bilayer model no longer has AFLRO in its ground
state.

B. Relation to previous work

To illustrate the similarity (or difference) of our results to
previous work, it is instructive to describe, in brief fashion,
most of the former results for interacting half metals with
different model usage and theoretical approaches in terms of
the existence (or not) of NQP states.

As previously noted, in early work Chioncel and
coworkers11 studied within DMFT the Hubbard model with
an imposed exchange splitting on a Bethe lattice (BL). They
obtained a split-off peak in the spectral density at high
energy, and the BL spectra in both spin channels assume a
two-peak structure. The low-lying minority states, centered
0.5 eV above but slightly overlapping EF , were identified
as NQP states. They then applied LDA + DMFT to the FM
LDA state for NiMnSb including a Hubbard interaction on
Mn and a spin-asymmetric T -matrix fluctuation exchange
(TMFX) approach. In addition to other spectral changes, they
obtained NQP states just above the Fermi level. A variational
cluster approximation treatment (a cluster DMFT method)
for NiMnSb has also been reported,44 to begin to assess the
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influence of interatomic correlation on the HM state. The main
features of the spectra were not altered greatly from the earlier
results.

A study of HM Heusler compounds, based on the LSDA
FM state and including a Hubbard interaction treated within
LDA + DMFT obtained a small NQP peak in the spectral
density of half-Heusler FeMnSb falling at EF for U = 4 eV
but a clean gap for U = 2 eV (as for LSDA, U = 0). Following
this discovery of dependence of NQP states on model
parameters, a study to identify appropriate parameters was
reported by Yamasaki et al.41 Calculations42 for Co2MnSi,
again using the TMFX method to treat the DMFT atomic
problem, led to the Fermi level above a clean minority
gap, EF almost coinciding with the top of the minority
gap, varying somewhat with temperature. One effect of the
interactions can be characterized as a shift downward of
minority states by 0.1 eV with respect to LSDA. Unlike most
HM Heusler compounds, Mn2VAl displays its gap in the
majority channel. An LDA + DMFT(TMFX) treatment of this
compound43 led to NQP states below the gap, and the posi-
tioning of the Fermi level switched from the top of the gap
(LSDA) to the bottom (DMFT) due to interactions and the
interaction-induced changes in self-energy. As discussed in
somewhat more detail later, the position of the Fermi level with
respect to the gap involves an issue, perhaps delicate, of band
filling.

Results have also been presented for HM CrO2, both
within LDA + DMFT (downfolded to t2g orbitals) and within
VCA (virtual crystal approximation),45 each method involving
somewhat different approximations and treatments of interac-
tions. The minority spin persisted, but the gap was reduced by
NQP contributions to the spectral density until the Fermi level
coincided with the top of the minority gap. This positioning
of the Fermi level is exactly that in which the spin gap (within
these treatments) vanishes. The NQP states are not pinned to
the Fermi level, but abut it.

Our model and method reveals no obvious NQP states,
certainly not within the gap and near the Fermi level. In our
studies of spectra, we have kept the chemical potential at the
center of the gap, thus well removed from the minority band
edges, and this may affect the appearance and strength of
NQP states. It is also difficult to make a real comparison
of a model with two noncollocated s-like orbitals with
the multiorbital d compounds. The interaction is, however,
treated without approximation, and the finite lattice builds
in interatomic correlations and thereby includes a repre-
sentation of q-dependent magnonlike excitations and self-
energy.

Despite the fact that DQMC treats interactions exactly,
the model of Eq. (1) does not explicitly retain Hund’s
rule terms (an approximation in common with most QMC
work). An open issue, in both our work and in the DMFT
treatments, is the accuracy of the representation of spin-flip
processes which have been identified46 as responsible for
the NQP states. The noninteracting single-particle gap in
Eq. (1) precludes the presence of low-lying magnon excitations
which are present, for example, in spin-symmetric bilayer
and multiorbital models which have long-range antiferro-
magnetic order and hence no spin gap at small intersheet
coupling.47,48
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FIG. 4. (Color online) (Main panel) Temperature effects on the
density of states of half-metallic phase (U = 3). The inset shows
N↓(ω = 0) versus T . The half-metal gap in N↓(ω) appears to be
robust for β > 3 (T < t/3).

V. EFFECT OF TEMPERATURE

The temperature dependence of the half-metallic properties
and their stability against finite-temperature spin excitations
are crucial for practical applications. As mentioned before,
one crucial effect is the depolarization caused by finite tem-
perature. With the separate spin bands fixed in our model, the
effect of reduced magnetization upon approaching the Curie
temperature is not included, but we can study temperature
effects “at fixed magnetization.”

Figure 4 illustrates the temperature effects on the density of
states in the half-metallic phase. While substantial rearrange-
ments of spectral weight occur for spin-up, the primary effect
for spin-down is an increased tailing of states across the band
edges and into the gap as T increases. Only when β < 3 is
the half-metallic feature destroyed [i.e., N↓(ω → 0) becomes
appreciably nonzero]. This corresponds to a temperature
T ∼ t/3 ∼ �/6 since the down-spin band gap � = 2t . If
we phenomenologically introduce �(T ) which vanishes at
the Curie temperature, and suppose that the magnitude of the
gap is the primary energy scale for this purpose, then we can
infer destruction of HM character by interactions (and thermal
broadening) around T ∗ = �(T ∗)/6.

We can also examine thermal effects by evaluating the
conduction electron spin polarization P (EF ). The combined
effects of finite-temperature and Hubbard interaction U are
given in Fig. 5. The polarization begins to deviate downwards
from unity at T ∼ t/3. The role of U on P (EF ) is negligible in
the low-temperature regime, but as T increases to intermediate
temperatures U has a distinct depolarization effect. Thinking
of our parameters as very roughly relevant to NiMnSb, t/3
is a very high temperature, one at which the underlying
magnetic order (fixed in our model) physically has diminished
drastically or vanished. Even well above room temperature
thermal effects as well as effects due to interaction U up to 4
on P (EF ) are negligible.

A separate diagnostic of the nature of half-metallic phase
and its robustness against the Hubbard interaction U is
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FIG. 5. (Color online) The temperature dependence of the con-
duction electron spin polarization, where the noninteracting gap is
equal to �= 2t (t = 1). P (EF ) begins to turn downwards at T ∼ �/6,
with minor dependence on the value of U .

provided by the conductivity, Fig. 6, evaluated from Eq. (6).
Recall that in a half metal for these values of parameters, the
conductivity arises only from the majority (ungapped) channel,
and spin-flip scattering is frozen out at these temperatures
leaving scattering only in the charge channel. These data
support the previous indications of the relatively small effects
of interactions in our bilayer model of a half metal. The primary
difference for U = 2 is the significantly larger conductivity
when T falls below 0.2t , compared to the U = 4 trajectory.
On the other hand, σdc at higher temperatures hardly depends
on U .

VI. EFFECT OF ZEEMAN MAGNETIC FIELD

All of the results above are at μ = B = 0 which, by particle-
hole symmetry, guarantees half filling of both spin species:
〈ni mσ 〉 = 0.5. A Zeeman field B introduces a spin bias, but one
of the signatures of an HM is that it is impervious to magnetic
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FIG. 6. (Color online) Temperature dependence of conductivity,
for U = 2 and 4. In the HM phase (t⊥↓ = 5) the conductivity [see
Eq. (6)] is contributed only by the up-spin carriers, which as noted
earlier is not affected strongly by these values of U .

fields that are not too large, that is, as long as the gap persists
and μ does not cross a gap edge. This vanishing of the spin
susceptibility is self-evident at the mean-field level, where B
merely shifts the relative positions of the up- and down-bands.
If the chemical potential (finally determined by state filling in
the metallic channel) does not cross either gap edge, there is no
reoccupation of states of either spin. In fact there is no change
(up to a constant) in the real-space potential for either spin, so
the (many-body) states themselves do not change. The energy
changes only due to the trivial magnetic energy term—−MB

(M is the net magnetization, which is unchanging until μ

crosses a band edge) which is zero in our HMAF-type model.
The interest here is in interacting systems, and this antici-

pated behavior of HMs has been supported by some rigorous
results based on ground-state many-body wave functions and
spin-density-functional theory.49,50 The theory provides for
ranges of applied Zeeman fields for which the ground state, and
therefore the spin-density matrix is unchanging, just as at the
mean-field level. The values of the applied fields, positive and
negative, at which the magnetism changes thereby provides
the gap edges, and their difference provides the (interacting)
fixed particle number gap.

In our calculations when t⊥↑ = t⊥↓ and B = μ = 0 there
is no sign problem at any temperature. This is a consequence
of a total correlation between the signs of the up- and down-
spin determinants, so that their product, the probability of the
configuration, is always positive. Allowing μ or B to become
nonzero induces a sign problem so that, normally, simulations
are much more challenging. Here, however, with t⊥↑ �= t⊥↓
the correlation between spin-up and spin-down determinants
has already been broken, which is why our simulations in the
earlier sections do not extend beyond β ≈ 6. We can access a
similar range here when B �= 0.

In the mean-field level, the effect of the external Zeeman
field is only to shift the spectral functions of both spin species
rigidly in opposite directions. It is therefore natural to expect
a transition from half-metallic phase to normal phase at |Bc|
equal to half the band gap. We show that this transition survives
in the presence of Hubbard interaction U , but with spectral
weight redistribution which is not captured in MF in addition
to renormalization of Bc.

Figure 7 shows the effects of Zeeman field on the spectral
density. In the top panel the weak magnetic field-induced
shifting of the spectral weights of both spin species in
the opposite directions is clear, though the shifts begin to
deviate from being rigid. HM character survives to Bc ≈ 0.4,
compared to Bc = 0.5 without interactions. This “magnetic
field gap” is renormalized by ∼20% at U = 3. In the bottom
panel, we demonstrate that a strong enough magnetic field (of
order the half the bandwidth, B ∼W/2) can induce a situation
in which the up-spin electron bands become completely filled
(heuristically, the effective chemical potential μeff↑ = μ + B

lies above the band), while the down-spin electrons remain
metallic: μeff↓ = −μ + B still cuts across a region of nonzero
N↓(ω). Since the filled majority channel holds one electron, the
occupation of some minority states reflects the fact that the total
density has increased as the field is increased at fixed chemical
potential μ = 0. At fixed particle density, a large field will
indeed produce a filled majority band, in which the minority
band must be empty (the nonzero spectral density must lie
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FIG. 7. (Color online) Effects of Zeeman field B on the density
of states, at fixed μ. Here U = 3,β = 8,t⊥↓ = 5. The Zeeman field B

shifts the spectral function of both spin species. (Top panel) At weak
fields (viz. less than half the gap), N (ω) more or less rigidly shifts with
B for both spin species, as in mean field. In the case of the insulating
down-spin electrons this shift eliminates insulating behavior as B

approaches half the band gap 2(t⊥ − 4t) and the magnetization begins
to change. (Bottom panel) At large magnetic field the up-spin density
of states is driven completely below the Fermi level μ + B so that
now the up-species is insulating. Meanwhile the down-spin density
is metallic because, with its larger bandwidth, the down-spin Fermi
level μ − B is not yet completely below the down-bands. In this way
one has an HM in which the metal/insulator roles of the two-spin
species is reversed.

only above μ = 0). This state is a saturated ferromagnetic
insulator. In this way, as B increases, the sequence of phases
at fixed μ proceed from HM with majority carriers → metallic
ferromagnet → HM with minority carriers. This sequence
converts, at fixed density, to HM with majority carriers →
metallic ferromagnet → saturated ferromagnet insulator.

Another reflection of the magnetic behavior, again at fixed
μ = 0, is illustrated in Fig. 8. The external Zeeman magnetic
field leads to an increasingly polarized lattice [top panel,
P = (ρ↑ − ρ↓)/(ρ↑ + ρ↓)], as ρ↑ grows monotonically at the
expense of ρ↓. At B ∼ 4 the up-bands are completely full
while the down-bands, which due to their nonzero t⊥↓ have
a larger bandwidth, are still crossed by the effective chemical
potential. This appears to be re-entry into a (polarized) HM
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FIG. 8. (Color online) Up, down, and total density as a function
of Zeeman field at fixed μ = 0 and increasing B. The system starts
at half filling ρ↑ = ρ↓ = 0.5 at B = 0 and becomes increasingly
spin polarized as B increases. Ultimately at B ∼ 4 equal to half the
bandwidth, the up-bands are completely filled. This value of B is
not quite sufficient to empty the down-band owing to its slightly
larger bandwidth. The polarization is P = (ρ↑ − ρ↑)/(ρ↑ + ρ↑). The
parameters are chosen as U = 3,β = 8.

phase. However, the spectra in Fig. 7 and the data of Fig. 8
were obtained at constant μ, and the B-induced increase in
density has be recognized but does not affect this picture.

VII. SUMMARY

We have used the numerically exact finite-temperature
determinant quantum Monte Carlo (DQMC) method to study
the effect of strong-interaction-induced correlations on half-
metallic behavior in a multiband Hubbard Hamiltonian. Our
model consists of a bilayer square lattice, or, alternately
viewed, a two-orbital system, with spin-dependent interlayer
hybridization chosen to induce a band gap in only one-
spin species. This is a model appropriate to half-metallic
antiferromagnets, since the lattice has the same number of
spin-up and spin-down electrons, but only the latter have a
gapped noninteracting spectrum.

By investigating the influence of an on-site Hubbard
interaction U , finite temperature T and external Zeeman
magnetic field B, we find that the half-metallic properties are
not particularly sensitive to the interaction U , up to values
equal to about half the bandwidth which seem appropriate to
intermetallic half metals. Finite-temperature effects depolarize
the conduction electron states only at T > t/3 of the gap, with
a degree of depolarization which depends weakly on U . A
very large Zeeman magnetic field drives the system (at fixed
particle number) from half metal to metallic ferromagnet, and
finally to a ferromagnetic insulating phase when the minority
spectral density is Zeeman split completely above the majority
spectrum.

An interesting issue in half-metallic ferromagnetic materi-
als that remains undecided is when nonquasiparticle (NQP)
states arising from electron-magnon interaction arise, and
whether they are above, below, or spanning the chemical
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potential. The signature of such states is the appearance of
a resonance in the gapped channel. In contrast to several
earlier studies based on different models and using a different
treatment of the interaction, we have not seen any distinct
characteristic features associated with NQP states in the
DQMC studies of our model. The difference may be related to
the fact that our bilayer system without the external magnetic
field satisfies particle-hole symmetry so that Ef is always
pinned to the center of the gap. Spin-flip processes become
more accessible as the chemical potential approaches a gap
edge. The other possibility is that the sign problem has
prevented us from reaching low enough temperature to observe
the development of the resonance, or that the spin waves that

may be required for a proper description of electron-magnon
interactions are not yet fully formed. It is possible that
the effects of interactions are simply model and material
dependent rather than universal.
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