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Quantum criticality in NbFe2 induced by zero carrier velocity
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The transition-metal intermetallic compound NbFe2 displays a magnetic quantum critical point very near
stoichiometry, unlike other Fe-based intermetallics, and no field or pressure tuning is required. In this compound
we obtain an obvious candidate for the origin of quantum criticality: an accidental Fermi surface “hot stripe”
centered on a point of vanishing quasiparticle velocity on the Fermi surface at an unconventional band critical point
(uBCP) of NbFe2. Around this uBCP the dispersion is cubic (εk − εF ∝ k3

x) in one direction in the hexagonal basal
plane and has a saddle-point character in the orthogonal ky,kz plane; both aspects have significant consequences.
At such a uBCP, Moriya’s theory of weak magnetism breaks down due to divergent contributions to the dynamic
bare susceptibility from the uBCP, both at Q → 0 and at momenta spanning the uBCPs. These results are
reminiscent of an earlier suggestion that anomalously low Fermi velocities are in essential aspect of the incipient
or weak ferromagnetism of TiBe2, and strongly support the viewpoint that, for some quantum critical points, the
mechanism may be identifiable in the underlying (mean-field) electronic structure.
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I. BACKGROUND

Quantum phase transitions, and the quantum critical (QC)
behavior displayed near these transitions, arise from quantum,
rather than thermal, fluctuations, which involve the lowest-
energy excitations of the material. In metals, these excitations
lie at the Fermi surface, and require some peculiar feature:
competing interactions, an unusual Fermi surface feature, or
anomalous near-zero-energy fluctuations of another origin, to
drive the transition and to give rise to the quantum critical be-
havior around the critical point. A number of quantum critical
materials have been discovered experimentally and in some
cases have been studied in great detail. Competing (magnetic)
interactions are often suspected to be the source of criticality.
Rarely has any Fermi surface feature been identified as clearly
responsible for quantum criticality, possibly because most QC
metals are strongly correlated systems whose Fermi surfaces,
hence their low-energy band structures, may not be given
precisely enough by the available mean-field band theories.
An exception to this is the high-temperature superconducting
cuprates, where an extended van Hove singularity has received
attention. Such singularities have been studied extensively,
both in weak coupling1 and in the Hubbard model at strong
coupling.2–4

Nb1−xFe2+x is a rare example of an itinerant transition-
metal intermetallic compound displaying antiferromagnetic
quantum criticality. Its unusual magnetic behavior and its
sensitivity to off stoichiometry (Nb deficiency x) has been
known for over two decades,5,6 and its phase diagram and
low temperature (T ), small x behavior has recently been
clarified.7–9 At stoichiometry, its susceptibility is Curie-Weiss-
like down to the spin-density-wave (SDW) transition (probably
long wavelength) at Tsdw = 10 K with vanishing Curie-Weiss
temperature, reflecting antiferromagnetism (AF) in close prox-
imity to a ferromagnetic quantum critical point (FM QCP).
Strongly negative magnetoresistance and a metamagnetic tran-
sition ∼0.5 T (at 2 K) reflect the removal of strong magnetic
fluctuations by a relatively small field. The QCP occurs at the
small Nb excess of xcr = −0.015, for which resistivity scaling
as T 3/2 and linear specific-heat coefficient γ ∝ ln T below

4 K reflect non-Fermi-liquid behavior characteristic of a QCP.
Even off stoichiometry the samples are rather clean (residual
resistivity as low as8 5 μ� cm), reflecting small disorder
scattering. For x < xcr (Nb excess) and for x > 0.008 (Fe
excess), FM [including possibly ferrimagnetic (FiM)] order is
observed.8 This system has been featured in recent overviews
of quantum criticality in weak magnets,10,11 suggesting that
in searching for the mechanism of quantum criticality more
emphasis should be given to transition-metal compounds12

(versus f -electron systems).
There is no viable explanation of why this particular itin-

erant system should display such unusual quantum criticality,
and this is the question we address here. The most detailed
theories of quantum criticality suppose that the physics is
dominated by fluctuations around the critical point, and
treat the effects of low-energy fermionic excitations without
specifically addressing their origin.13–17 The shortcomings
of current theories for itinerant quantum criticality have
been reemphasized recently.18 A necessary assumption is an
underlying well-behaved systems of noninteracting fermions.
Imada et al.19 have suggested itinerant quantum criticality
arises either from proximity to a first-order transition (quantum
tricriticality), a metal-insulator transition (not the case here), or
a Lifshitz transition, which accompanies a change in topology
of the Fermi surface. Frustration of magnetic order on the
Fe2 kagome sublattice has also been suggested as playing a
part.20 The study of interacting systems near conventional band
critical points (BCPs) (van Hove singularities) indicates non-
Fermi-liquid behavior1 and a profusion of possible phases.21

Stronger singularities may be expected to further complicate
the phase diagram.

II. STRUCTURAL AND CALCULATIONAL DETAILS

NbFe2 ≡ NbFe10.5Fe21.5 forms in the hexagonal Laves
phase C14 space group P 63/mmc (No. 194), with Nb at 4f

( 1
3 , 2

3 ,u) which can be considered to lie within Fe cages, Fe1
at 2a (0,0,0) which lies on a hexagonal sublattice, and Fe2
at 6h (v,2v, 3

4 ) sites that form kagome lattice sheets in the
basal plane. (See Fig. 1.) We perform all calculations with

085133-11098-0121/2011/84(8)/085133(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.085133


NEAL, YLVISAKER, AND PICKETT PHYSICAL REVIEW B 84, 085133 (2011)

FIG. 1. (Color online) Crystal structure of NbFe2 =
NbFe10.5Fe21.5, with hexagonal space group P 63/mmc (No.
194). The Fe2 sites lie on a kagome lattice (e.g., the upper and
lower atomic planes in this figure), the Fe1 sites lies on a simple
triangular lattice midway between Fe2 layers, and Nb atoms occupy
“interstitial” sites.

the experimental lattice constants a = 4.841 Å, c = 7.897
Å, and relaxed internal parameters u = 0.0652, v = 0.1705,
using the full potential local orbital code22 with k-point meshes
up to 57 × 57 × 55 to map out the unusual part of the band
structure in detail. The full potential linearized augmented
plane-wave (LAPW) code WIEN2K (Ref. 23) has been used to
check consistency of the fine details that we discuss.

III. ELECTRONIC ANOMALY

The electronic structure of NbFe2 was studied initially by
Takayama and Shimizu,24 and more recently by Subedi and
Singh (SS).25 The complex band structure (due to 12 transition-
metal atoms in the unit cell) is shown in the basal plane in a
2-eV region centered on the Fermi energy (EF ) in Fig. 2. The
Fermi level lies on the upper (steeply decreasing) density of
states (DOS) peak, shown on a fine energy scale in Fig. 2(b),
with several bands crossing EF .

The Fermi surfaces are correspondingly many and varied,
and have been presented and discussed by Tompsett and co-
workers.26 The point we will emphasize here is the wiggle
in the band just crossing EF along the �-M direction that
produces an unusually flat portion only 6 meV (equivalent to
70-K temperature) above EF . We argue that, when the Fermi
level is tuned to this critical point, the vanishing velocity in
this critical region produces unusual low-energy electronic
excitations that can account for anomalous behavior, viz., a
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FIG. 2. (Color online) (a) Band structure of NbFe2 within 1 eV of
the Fermi level. The inset shows the band critical point 6 meV above
EF that lies one-third of the way along the �-M line. (b) The DOS of
NbFe2 near EF on a fine scale, showing the steeply decreasing DOS
in the region of EF . The circle indicates the position in energy of the
uBCP, 6 meV above EF , calculated without the precision necessary
to establish the shape of the anomaly (in spite of the fine k mesh we
have used). (c) A high-resolution calculation (in arbitrary units) in
the uBCP region of the behavior of N (E) (upper black curve), and
indicating the divergence of the inverse velocity 〈v−1(E)〉 (lower red
curve), which is a fundamental quantity in Moriya’s theory of weak
magnetism.

quantum critical point at a low doping level, as is observed in
NbFe2 (xcr = −0.015).

This viewpoint has received strong support from recent
alloy calculations [using the coherent potential approximation
(CPA)] by Alam and Johnson.27 They find that CPA results
place the Fermi level at this uBCP at x = −0.0174, extremely
close to the experimental concentration at the critical point.
The dispersion remains well represented by cubic along the
symmetry direction.

Referencing the energy and wave vector to the point of the
anomaly, the uBCP dispersion is given to lowest order along
each axis by

εk = k3
x

3meK
+ k2

y

2my

− k2
z

2mz

, (1)

i.e., it is effective-mass-like along ky and kz with opposite
signs of the masses my ,mz, but it is infinitely massive along
the kx direction, with cubic rather than quadratic variation.
(The calculated band is even flatter than this approximation.)
We characterize this dispersion through a quantity K with
dimension of wave vector, corresponding heuristically to a
kx-dependent mass enhancement K/kx , diverging as kx → 0.
The crossing bands have nearly pure Fe2 dxz,dyz character (the
kagome sublattice), not involving either Fe1 or Nb orbitals.

This anomalous dispersion is an accidental occurrence (not
related to symmetry or normal band edges), resulting from the
crossing of two bands having the same symmetry that occurs
extremely near the Fermi level of stoichiometric NbFe2. Its
distinctive character is evident by noting that the change in
the constant energy surfaces near E = 0 does not fit into
the conventional categorization.28 Because it is accidental,
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it requires tuning to put EF exactly at the critical point,
and the value xcr of NbFe2 is of the right magnitude to
provide this tuning [N (EF ) × 6 meV = 0.02 electrons/f.u.].
For nonstoichiometry in a compound of two such different
atoms as Nb and Fe, the direction of change of the Fermi
level is not obvious a priori. However, alloy calculations
can determine the Fermi-level change with concentration, and
results by Alam and Johnson27 have determined that indeed
the uBCP lies at the Fermi level for x = xcr. We proceed to
examine the consequences for low-energy excitations.

The Fermi energy EF lies in a region of steeply decreasing
DOS (the full DOS has been presented by Takayama and
Shimizu24 and by SS25), corresponding to the gaps that open
in much of the zone (along K-H, along L-H-A). The DOS near
EF is displayed in Fig. 2(b) and gives an idea of the magnitude
of the peak at the uBCP; the form for the dispersion in Eq. (1)
is given more precisely in Fig. 2(c).

IV. EFFECT OF UNCONVENTIONAL BCP

The occurrence of BCPs (vanishing velocity) was first
studied systematically by van Hove,29 who noted that, in
the absence of restrictions, BCPs in a band occur at most
at isolated points. He studied the conventional (cBCP) case
where the determinant of the Hessian ∇k∇kεk evaluated at the
BCP is nonvanishing, which corresponds to vanishing velocity
at (1) band edges, where the constant energy surface also
vanishes, and (2) saddle points, with 	v = 0 on a pinched-off
surface. For our representation of the uBCP in NbFe2, this
determinant vanishes due to the cubic variation with kx ,
resulting in this unconventional type of BCP. This uBCP
therefore does not correspond to the usual possibilities, which
are a (dis)appearing of a Fermi surface or to a pinching off of
the Fermi surface.

Instead, it is an isolated vanishing of carrier velocity on
an extended surface, which is shown in Fig. 3. A spectrum
of soft excitations (arbitrarily low velocities on the Fermi
surface), vanishing more conventionally (linearly) in the ky

and kz directions, is joined by a line of quadratically vanishing
velocities off the Fermi surface along the kx direction. The
anomaly in the DOS is shown in Fig. 2(c) and numerically
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FIG. 3. (Color online) Fermi surface (constant energy E = 0)
around the uBCP (see text), which lies at the center of the plot where
the velocity vanishes; the anomalous kx direction is plotted vertically.
The color map indicates the relative velocity; the 	k, energy, and
velocity scales are arbitrary.

appears to behave roughly as −|E|2/3 near the peak. The
behavior of 〈v−1(E)〉, whose importance is discussed below,
is also shown, and is fit well with a E− 1

4 divergence.

A. Comments on zero Fermi velocity

The occurrence of a zero Fermi velocity has not attracted
much attention to date. The constant energy E surface SE is
given by εk = E, i.e., one condition on a function of three
variables. For constant velocity surfaces, we consider the
surfaces of constant v2

k , which (unlike |	vk|) is an analytic
function of k except at degeneracies (including band crossings)
which is not our interest here. The constant velocity surface
SV given by v2

k = V 2 is another surface in k space that
may intersect the E surface, so constant velocities form lines
(contours) on SE . This picture suggests that zero velocities
might arise as lines on the Fermi surface.

However, vanishing velocity v2
k = 0 is special. The constant

velocity surface SV arises from a single condition

v2
k,x = V − v2

k,y − v2
k,z, (2)

implicitly giving the surface kx(ky,kz; V ) in k space. The case
V = 0 is special because it requires requires separately vk,x =
vk,y = vk,z = 0, i.e., three conditions. One condition leads to
a surface, two conditions leads to a line, so three conditions
reduce to a point. For a point to lie on a separate surface is an
accidental, albeit tunable, occurrence.

The conditions for SE and SV described above do not take
into account any connection between the two surfaces, whereas
	vk being the derivative of εk is the case of interest. Is this
relevant? On an SE surface, the velocity is always normal
to the surface, so at a given point 	k on SE , the velocity is
given not by a general vector but by a signed scalar: positive
if outward, negative if inward. Vanishing velocity, however,
still requires three conditions: the orientation of the surface
normal (two angles) and the vanishing of the magnitude. Thus
from this viewpoint as well as the former one, it follows that
zero velocities occur at most as isolated points on the Fermi
surface.

B. Velocity distribution around the uBCP

Going beyond averages over the Fermi surface (FS) and the
bare susceptibility, the spectrum of carrier velocities (hence,
single-particle and pair excitation energies) is of fundamental
concern for spin fluctuations and quantum criticality. We have
evaluated the distribution of velocities V at given energy E , as
done earlier for TiBe2,30 for the uBCP,

D(E,V ) =
∑

k

δ(εk − E)δ(|	vk| − V ), (3)

and display the results in Fig. 4. For isotropic free electrons
this distribution vanishes except for a highly singular value
along the line V = √

2mE , where it becomes the product of
two δ functions. For the uBCP, the small V region of D(E,V )
is sharply peaked in the vicinity of Vm(E) ∝ E2/3, arising from
the quadratically small velocity along the x axis with relatively
large phase space. The spectrum vanishes at smaller velocities
V < Vm, but has a tail at higher velocities where the other two
axes contribute.
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FIG. 4. (Color online) Color plot representation of the velocity
spectrum D(E,V ), which provides the decomposition of velocities
(vertical axis) for each energy (horizontal axis). All scales are
arbitrary. The spectrum is sharply and narrowly peaked (light shading)
very near the onset, with a long tail at higher velocities.

The Fermi-surface topology near the uBCP is given (for
simplicity, scaling out the masses and the coefficient K to get
εk = k3

x + k2
y − k2

y) from εk = 0 by

kx = sgn
(
k2
y − k2

z

)∣∣k2
y − k2

z

∣∣1/3
. (4)

This warped FS (Fig. 3) is centered on the peculiar singular
uBCP. As the uBCP is approached, the FS tangent plane
becomes sensitively dependent on the angle of approach,
and the curvature becomes singular. Such a zero velocity
point leads to arbitrarily low-energy single-particle excitations
around the uBCP, including a “hot stripe” of low velocities
just off the Fermi surface along the ±kx axes (where vk ∼ k2

x

is quadratic, not linear, in k) whose impact on magnetic
fluctuations requires investigation.

C. Coefficient in Moriya theory

In Moriya’s widely applied theory15 of nearly FM (and AF)
metals, the small-Q inverse susceptibility has an imaginary
part at low energy given by N (EF )〈v−1〉ω/Q. It is straight-
forward to show that when there is a BCP on a (nonvanishing)
FS, 〈v−1〉 diverges. The expression is

N (EF )〈v−1〉 =
∑

k

1

vk

δ(εk) ∝
∫

S

dSk

v2
k

. (5)

Since v2
k is smooth and assuming a minimum (vanishing) at k0

(vk0 = 0), the Taylor expansion is

vk = 1
2 	κ · G · 	κ + · · · , (6)

where 	κ ≡ 	k − 	k0. The second derivative matrix G can,
without loss of generality, be taken to be diagonal and with
wave-vector rescaling G → gI. Then in a small region κ < k1

where the Taylor expansion holds, the contribution to 〈v−1〉
when vk0 = 0 is

〈v−1〉 ∝ g−1
∫ k1

0

2κ dκ

κ2
∼ 2

g
log(κ), (7)

giving an infrared divergence at the lower limit of integration.
From Fig. 2(c), numerical scaling gives 〈v−1(E)〉 ∼ E−1/4 for

this form of uBCP. This divergence means that Moriya’s theory
as currently formulated breaks down as this uBCP approaches
the Fermi surface, and requires generalization: A higher-order
expansion of the noninteracting susceptibility is required.

If the dispersion expansion Eq. (1) holds up to km (perhaps
a few percent of the Brillouin zone dimension) we obtain (in
the limit ω/Q2 → 0 followed by Q → 0)

χ◦(Q,ω) =
∑

k

f (εk) − f (εk+Q)

εk+Q − εk − ω + iη

→ χ̄◦(Q) +
∑
k<km

∑
j

Q2
j

2m(k)j∑
j

Q2
j

2m(k)j
− ω + iη

δ(εk), (8)

where the first term χ̄◦(Q) arises from |	k| > km and is
essentially that presented by SS, and the second term arises
from the uBCP region where the quadratic term replaces the
usual 	Q · 	vk term. Here η is an infinitesimal and the masses
m(k)j along the three axes are (meK/kx,my, − mz).

Neglecting the kx dependence, which due to its smallness
is unimportant for most directions of 	Q, in the integrand for
k < km for the real part leads to a contribution to the bare
fluctuation spectrum from the uBCP given by

�χ◦(Q,ω) ≈ �N (EF )
Q2

y

/
2my − Q2

z

/
2mz

Q2
y

/
2my − Q2

z

/
2mz − ω

− iπω
∑
k<km

δ(εk)δ

(
3kxQ

2
x

meK
−

[
Q2

y

2my

− Q2
z

2mz

])
,

(9)

where �N (EF ) is the DOS from within k < km. Due to
the saddle-point character in the ky-kz plane, the real part
has strong anisotropy including sign changes for |Q2

y/2my −
Q2

z/2mz| � ω that do not occur for conventional bands. The
imaginary part acquires a low-energy form

Im �χ◦(Q,ω) = ω

Q2
x

C̄Q, (10)

where C̄Q is a somewhat 	Q-dependent amplitude arising from
an integral over the line of constant kx on the Fermi surface
where the argument of the δ function in Eq. (9) vanishes. This
lowest-order result for small ω,Q suggests that the temporal
fluctuation ω/Q term in Moriya theory

χ◦(Q,ω)−1 = χ̄◦,−1 + AQ2 − iCω/Q + · · · (11)

must be replaced by

χ◦(Q,ω)−1 = χ◦(0,0)−1 + AQ2 − iC̄Q

ω

Q2
x

+ · · · (12)

when there is an uBCP at or near the Fermi surface.
Thus the (bare) low-energy magnetic fluctuation spectrum

is no longer a simple function of | 	Q| and ω, rather it is highly
and essentially anisotropic around the |Qy | = |Qz| directions,
no longer being a simple function of | 	Q| and ω, and the
low-energy dynamics are scaled by Q2

x rather than Q. It will
be important to learn how treatment of the fluctuations will
renormalize this bare low-energy behavior.
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D. Implications of multiple uBCPs

So far we have only discussed the isolated uBCP, which
would be most relevant to ferromagnetic, rather than antiferro-
magnetic, quantum criticality. In the hexagonal lattice there are
six symmetry related such hot spots Kc(±1,0),Kc(± 1

2 , ±
√

3
2 ),

with Kc ≈ 0.30kzb in terms of the zone boundary distance.
There are therefore five nonzero spanning Q vectors (and
symmetry partners) spanning these hot spots, for which
the large-Q susceptibility at zero or small energy will be
correspondingly large, thus providing a driving force for SDWs
or AFM order at the corresponding wave vectors. Note that,
quite generally, the ω ≡ 0, Q → 0 susceptibility approaches
N (EF ), which also possesses a sharp, but modest in magnitude,
peak at the BCP.

Thus both FM and AF (SDW) susceptibilities will be
strongly enhanced, and thus will be competing for their own
separate magnetic order. This competition introduces another
type of frustrating fluctuation, the effects of which only
a renormalized theory can resolve. For transitions between
inversion-related hot spots the SDW susceptibility will be
particularly large, since the hot-stripe axes will then be aligned.
These AFM wave vectors may require special attention.

V. FIXED SPIN MOMENT STUDY

The small Q, small ω susceptibility we have just examined
reveals the delicate low-energy tendencies of a nonmagnetic
system with an uBCP. We next explore magnetic tendencies
and the distribution of moments in NbFe2 by performing
fixed spin moment31 (FSM) calculations. Magnetic states have
been studied previously at stoichiometry by SS and for doped
materials by Tompsett et al. Similar to the earlier studies, we
do not pursue noncollinear magnetism here.

Our calculated energies E(M) and atomic moments versus
imposed moment M are presented in Fig. 5, using the
experimental crystal structure parameters and the generalized

FIG. 5. (Color online) Atomic moments (symbols) and energies
(solid lines) from fixed spin moment studies, showing two distinct
phases, ferrimagnetic (FiM) with minimum of energy ∼0.3 μB/f.u.,
and ferromagnetic (FM) with minimum at 2.3 μB/f.u. The minima
differ by 13 meV/f.u. Here M = 0 corresponds to a zero net moment
ferrimagnetic state, hence the curve is not symmetric around the
total moment M = 0. The ferrimagnetic state could not be followed
beyond M < −0.5 μB .

gradient approximation (GGA) exchange-correlation func-
tional. Because in the absence of constraints the nonmagnetic
state is calculated to be unstable to magnetic order (as
observed), the curves are not symmetric around zero moment;
however, there is always a symmetry-related solution at
negative M where all spin directions are reversed from the
corresponding state at positive M.

Two magnetic states are evident in our series of calculations,
a low net moment ferrimagnetic (FiM) arrangement and a
(forced) ferromagnetic (FM) state. The more stable state is
the FiM one with total moment of 0.4 μB (all moments are
quoted per formula unit), comprising moments of ∼1 μB on
Fe2 and −1.8 μB on Fe1. This state is the same configuration
as the lowest-energy configuration found by SS25 (of the five
that they found). Their moments (−1.18 μB , 0.75 μB for Fe1,
Fe2, respectively) differ from ours (−2 μB,0.8 μB ) indicating
sensitivity to structure (they use theoretically relaxed internal
positions) and exchange-correlation functional, as already
noted by Tompsett et al. For the range of moments we have
studied there is always a small negative moment (of the order
of 0.1 μB or less) on the Nb atom. In the subsequent discussion,
recall the atomic ratios are NbFe10.5Fe21.5.

As the imposed total moment is increased “adiabatically”
(we use the spin densities from the previous fixed moment to
begin self-consistency for the next in our FSM calculations),
the moments on both Fe atoms initially change by comparable
amounts along the direction of change in the imposed moment.
In the vicinity of M = 1.4 μB the decreased downward
moment of Fe1 (∼1 μB ) becomes unstable, and it flips
direction in a first-order fashion to the FM state, where it
rapidly approaches the same moment as Fe2. This first-order
“spin-flop” transition is evident in the small discontinuities of
the Fe2 and Nb moments. The energy curve reflects nearly
quadratic increases relative to the minimum of each of the two
states (FiM and FM), with switchover from one to the other
again reflecting first-order behavior.

The minimum energy of the FM state (total moment
of 2.4 μB ) occurs with moments of ∼1.1 μB and 1.5 μB

on the Fe1 and Fe2 atoms, respectively. The energy of
this state, which is also one of those discussed by SS, is
12 meV/f.u. higher than the FiM state in our calculations. The
strong variation in moments with applied field (i.e., imposed
moment) indicates the itinerant character of the magnetism, in
agreement with the conclusion of SS, based on the different
values of atomic moments occurring in the five configurations
that they studied. All of the calculated states (FM, AFM, or
FiM), by SS, by Tompsett et al., and by us, have much larger
moments than seen experimentally, which is the common
finding in weak (and incipient) ferromagnets and points to
the dominant influence of magnetic fluctuations.

The FSM calculations, and the results of SS, establish there
are many ordered collinear states at stoichiometry differing
in energy by only ∼10–20 meV/f.u. Unlike in fluctuating
systems, magnetism in a mean-field approximation [as from
density functional theory (DFT) calculations with static mo-
ments] is not very sensitive to small anomalies in the band
structure, and FSM results at xcr show little difference from
those at nearby band fillings. The near degeneracy of several
magnetic states, as well as the possibility of magnetic frustra-
tion on the kagome Fe2 sublattice, raises the further possibility
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of noncollinear magnetism (including spiral and longitudinal
SDW) as well. Such behavior can depend on the (complicated)
FSs. SS found weak variation of the generalized noninteracting
susceptibility (no matrix elements) in the Qz = 0.38π/c plane
in NbFe2. For the same function, Tompsett et al. found along
both [1,0,0] and [0,1,0] directions a very sharp minimum
as Q → 0. Neither provides support for the importance of
ferromagnetic fluctuations (Q → 0), but some of the bands at
the Fermi level are strongly differentiated in amounts of Nb,
Fe1, and Fe2 character, so matrix elements will be important.

VI. SUMMARY

We have identified an unconventional band critical point
in the band structure of NbFe2 and have pursued the con-
sequences when the Fermi energy is tuned to the critical
point. We have demonstrated that fluctuations around an uBCP
are essentially different—highly anisotropic, and differing in
the Q,ω dependence—from what is assumed in the more
conventional treatments of magnetic quantum critical points.
The dynamic fluctuation spectrum changes qualitatively from
that of a conventional band structure, and Moriya’s formu-
lation for weak ferromagnets requires adjustment. From our
calculations and earlier ones, NbFe2 displays several low-lying
magnetically ordered states (as well as possibly noncollinear
ones that have not yet been addressed), so the spectrum
of low-energy dynamic spin fluctuations may be unusually
complex in this quantum critical material.

Two other intermetallics, both with the cubic (C15) Laves
structure rather than the hexagonal (C14) Laves structure
of NbFe2, have attracted much attention due to their weak
magnetism. TiBe2 at stoichiometry is a highly enhanced
paramagnetic that was long believed to have weak order
because magnetic order appears in impure samples. van Hove
singularities occur very near EF in TiBe2; if nonstoichiometry
moves EF upward by as little at 3 meV, the velocity spectrum30

D(EF ,V ) extends nearly to V = 0 and 〈v−1〉 is enhanced
by a factor of 2. There is no uBCP as in NbFe2, but the

enhancement in low-energy excitations (the occurrence of low
velocities) bears similarity to NbFe2. Weak magnetism and
metamagnetic transitions in ZrZn2 have been attributed28 to
a saddle-point van Hove singularity (a cBCP) very near EF .
Ni3Al (FM with small moment <0.1 μB/Ni below 40 K) and
isovalent Ni3Ga (highly enhanced but not ordered) have also
attracted attention. The distinction was attributed by Aguayo
et al.32 to stronger spin fluctuations in Ni3Ga, using analysis
based on local density approximation (LDA) results applied
within Moriya theory. The band structures themselves are very
similar except for one Al- (Ga-) derived band, though there is
no obvious anomaly in the band structure near EF .

The NbFe2 system, providing a rare example of itinerant,
low-temperature antiferromagnetism and non-Fermi-liquid
quasiparticle behavior at low temperature, seems to require a
specific microscopic mechanism compared to the few other
known weak itinerant magnets. We have proposed that an
unconventional band critical point, in which an isolated
point of vanishing carrier velocity on an extended Fermi
surface, provides the explanation. The self-consistent CPA
calculations of Alam and Johnson27 support this position
of the Fermi level at the quantum critical point, implying
further that the position of the critical point is not significantly
renormalized by the critical fluctuations. Moriya’s theory of
weak magnetism requires generalization when the Fermi level
lies near or at a uBCP, and the phenomenological renormalized
Landau theory33 that has been applied34 to ZrZn2 also must be
generalized in this case. Generalizing the theory of itinerant
quantum criticality to encompass such a uBCP should help
to illuminate the mechanisms and the behavior around such
itinerant QCPs.
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