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Strong particle-hole asymmetry in a 200 Kelvin superconductor
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The superconducting state of metals has long provided a classic example of particle-hole symmetry at low
energy. Fermionic self-energy results based on first-principles theory for the electron-phonon coupling in H3S
presented here illustrate strong particle-hole asymmetry in the dynamics arising from the underlying sharp
structure in the fermionic density of states. Thus H3S not only is the superconductor with the highest critical
temperature Tc (through 2018), but its low-energy, low-temperature properties deviate strongly from textbook
behavior. The minor momentum and band dependence of the fermionic self-energy allows evaluation of the
momentum-resolved and zone-averaged spectral densities and interacting thermal distribution function, all of
which clearly illustrate strong particle-hole asymmetry.
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I. BACKGROUND

The discovery [1] and confirmation [2,3] of a record high
superconducting transition temperature as high as Tc = 203 K
in H3S at 160-GPa pressure has reignited efforts toward
the long dreamed of pinnacle of superconductivity at room
temperature. The conventional phonon-exchange mechanism
of electron pairing confirmed by isotope shift measurements
[1] and by several theoretical studies [4–13] belies the occur-
rence and interconnection of several unconventional processes
competing within H3S. This new phase of superconducting
matter above 200 K arises from three causes: the small mass of
the proton compared to that of typical nuclei, strong scattering
by large H displacements, and sharp structure in the electronic
density of states N (E ) at the Fermi energy EF arising from
a pair of closely spaced (300 meV) van Hove singularities
(vHs). Each vHs occurs at 24 symmetry related points in the
Brillouin zone (BZ), thereby involving a significant fraction
of the Fermi surface with low carrier velocities [14]. The
small proton mass elicits phenomena that have received de-
tailed theoretical attention: high-frequency phonons; quan-
tum zero-point motion [12] of H and its effect on crystal
stability [15]; strong anharmonicity, which impacts dynamic
crystal stability [12,15]; the character and coupling strength
of phonons [4,8,12,15]; and the unsettled question of nonadi-
abatic effects due to vanishing velocities near EF at 48 points
in the BZ [14].

The effects of the vHs are neglected in most theoretical
work, although every aspect of standard electron phonon cou-
pling (EPC) theory requires reformulation when N (E ) varies
strongly on the scale of phonon energies [16,17]. Momentum-
dependent Eliashberg equations can be applied on the imag-
inary frequency axis [12,17], but the vHs make numerical
convergence challenging. Additionally, the normally irrele-
vant Debye-Waller self-energy (SE) bubble diagram becomes
relevant [12]. Also, the concept of phonon scattering electrons
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from Fermi surface to Fermi surface must be generalized
because regions of the zone with energy within � (maximum
phonon energy) of the Fermi surface contribute nonuniformly
to scattering processes. In the case when only the fermionic
density of states (DOS) but not the wave function character
is strongly varying, as in H3S [6,14], the theory has been
generalized and was applied to Nb3Sn [17], whose DOS peak
is even sharper than in H3S.

There has not yet been any study of the interacting
fermionic excitation spectrum in H3S that provides direct evi-
dence of EPC. The pioneering work of Engelsberg and Schri-
effer [18] and Shimojima and Ichimura [19] revealed how
coupling results in mixed elementary excitations—fermionic
quasiparticles incorporating lattice motion and renormalized
(bosonic) phonons—that are each a combination of bare elec-
trons and phonons, with their mixing increasing with the EPC
strength λ. In this paper we address the excitation spectrum,
with a description of (1) sharpening, not broadening, of the
already narrow spectral peak by interactions, (2) the “water-
fall” structure in the momentum-resolved spectral density as
coherence burns off, and (3) several unconventional impacts
of strong particle-hole (p-h) asymmetry.

Section II describes the computational methods that have
been applied to evaluate the fermionic self-energy and the re-
sulting spectral density. In Sec. III the self-energy is displayed
and discussed, along with the interacting band structure and
associated spectral density (the interacting counterpart of the
electronic density of states). The effect of gap opening is
also provided. The interacting thermal distribution function
is provided and discussed in Sec. IV, illustrating its particle-
hole asymmetry. In Sec. V we provide predictions for the
infrared optical conductivity, and Sec. VI provides a succinct
summary.

II. METHODS

Density functional theory based and density functional
perturbation theory based computations have been carried
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FIG. 1. Electron self-energy �k,n(ω) and several consequences. (a) Crystal structure of Im3̄m H3S with highlighted H-S bonds; large
and small spheres represent S and H, respectively. The S atoms form a simple bcc lattice, and H atoms are located between two S atoms.
(b) Spectral density A(ω) (see text) compared to the electronic DOS. Note the sharpness of the peak at EF . (c) Bottom: Re�k,n(ω) for the five
bands n crossing EF plotted versus the frequency ω. Middle: Im�k,n(ω), obtained and plotted as for Re�k,n(ω). Top: the behavior of spectral
density A(ω) and the electronic DOS near the EF peak, showing the distinctive narrowing rather than broadening of the peak. (d) Band- (n)
and momentum- (�k) resolved electron spectral function A�k,n(ω) calculated with EPW, overlaid on the uncoupled Kohn-Sham bands, along two
high-symmetry lines. Colors at the red end of the rainbow spectrum are higher intensity. The renormalized slope at the Fermi level (see inset)
is an indication of the factor of 3 (1 + λ) mass enhancement caused by strong EPC. Farther than � ∼ 250 meV from the Fermi level, decay by
phonon emission smears the single-particle states and removes the coherent renormalization.

out using a plane wave basis set in the QUANTUM ESPRESSO

(QE) [20,21] simulation package, giving the electronic and
phonon dispersions and EPC. H3S at a pressure of 210 GPa
has space group Im3̄m consisting of a bcc lattice with a lattice
constant of 5.6 a.u. [6], pictured in Fig. 1(a). This structure
and pressure have been used in the present calculations in
harmonic approximation. Norm-conserving pseudopotentials
of the Trouiller-Martins type are used in the QE code. The
Perdew-Burke-Ernzerhof [22] implementation of the gener-
alized gradient approximation is chosen as the exchange-
correlation functional.

BCS theory, and its strong-coupling Migdal-Eliashberg
extension [23,24], of phonon-coupled superconductivity pro-
vides a broad road map for achieving high critical temperature
in conventional superconductors. Quantities related to EPC,
such as the Eliashberg function α2F (ω), λ, the electron self-
energy �(�k, ω), and resulting spectral functions in the normal
state, were obtained using the QE, WANNIER90 [25], and
EPW codes [24,26–28]. We have found that the vHs require
unusually fine �k (electron) meshes to obtain converged results.

Along with a plane wave basis set with a cutoff of 85 Ry
we have used a 26 × 26 × 26 k-point grid for the electronic
self-consistent routines and a 32 × 32 × 32 k-point grid for
the DOS calculation. A 6 × 6 × 6 q-point grid was used to
calculate the phonon eigenvalues and dynamical matrices.
The use of WANNIER90 and EPW allows us to interpolate the
electron and phonon eigenvalues to a fine mesh of 60 × 60 ×
60 k and q points each for the final BZ integration. The
band electronic spectrum N (E ) contains a narrow peak with
Fermi energy (the zero of energy) lying at the higher of two
vHs separated by 300 meV [14], shown on different scales in
Figs. 1(b) and 1(c).

The EPW [26,27] code of Giustino and collaborators pro-
vides the electron momentum k and band index n self-energies
on a dense BZ mesh. The weak k, n dependence of the
electronic self-energy �kn(ω) allows construction of a zone-
averaged �(ω) that will provide the interacting electronic
spectral function. The fermionic Green’s function Gk,n(ω)
provides the band electron spectral density Ak,n(ω) and
thereby the zone-averaged counterpart A(ω).
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III. ELECTRON SELF-ENERGY

Scatterplots of both the real and imaginary parts of
�kn(εkn) versus εkn are shown in Fig. 1(c) for the bands
crossing μ (zero). The self-energies fall along lines for each
band, with minor band dependence. This enables us to obtain
a representative average �(ω).

The electron self-energy �kn(ω) = M + i� gives the en-
ergy shift M and broadening � that provide insight into
many consequences of EPC. The interacting Green’s function
is (suppressing all indices) G−1 = G−1

KS − � in terms of the
Kohn-Sham (band) Green’s function GKS . In Fig. 1(c) these
real and imaginary parts of �kn(εkn), obtained using the EPW

code in the normal state (200 K) of H3S, are shown for each
of the five bands crossing EF . The EPW code produces matrix
elements of � in the DFT band representation �k,n(ω) for
each band state �k, n at ω = εkn.

The band dependence is roughly an average value
�(ω), ±30% in both M and �, up to the characteristic fre-
quency � of 250 meV (also roughly the maximum phonon
frequency) where both M(ω) and �(ω) have begun to deviate
from their low-T , low-energy Fermi liquid forms M(ω) =
−λω,�(ω) = B(T ) + Cλω2 for some constant C, and we
use a thermal broadening B(200 K) = 7 meV. The slope
−∂M(ω)/∂ω|ω=0 = λ gives the quasiparticle mass enhance-
ment m∗/mb = 1 + λ ∼ 3 over the band mass mb. The in-
verse scattering rate � peaks at a value of 0.6 eV at |ω| ≈
1.5�. Above 2� both parts of � become slowly varying,
with M(ω < −2�) ≈ −0.2 eV for occupied states, �(|ω| >

2�) ≈ 0.3 eV. Note that above |ω| ≈ 2�, M is not particle-
hole symmetric.

A. Interacting band structure

The band-resolved spectral density Akn(ω) ≡
|ImGkn(ω)|/π , which is the interacting counterpart of
the Kohn-Sham band structure and the quantity measured
in angle-resolved photoemission probes, is shown as a heat
map in Fig. 1(d). This plot, with an enlargement of the
low-energy region in the inset, reveals several impacts of
EPC. (1) The first is the mass enhancement (flattening) of
the sharp, low-energy quasiparticle bands by the factor 1 + λ

at the chemical potential μ = 0. (2) The coherent mass
enhancement “boils away” abruptly just above ω ∼ �, giving
way at higher energies to a substantial 0.3–0.5 eV broadening
around spectral density peaks that are displaced by ∼0.2 eV
from the Kohn-Sham bands. (3) The transition region reveals
the “knee” or waterfall transition from coherent to incoherent
that is a signature of strong EPC. This knee has received much
attention in cuprate high temperature superconductor [29].

B. Spectral density

The zone-averaged electron spectral density is given by
A(ω) = 1

π

∑
k,n |ImGk,n(ω)|. We approximate by using a

(k, n)-averaged self-energy �(ω), essentially equal to the red
band data plotted in Fig. 1(c). (For small ω the self-energy
presented by Kudryashov et al. [30] is similar since both
satisfy the Fermi liquid conditions mentioned above. For
larger ω there are strong differences due to approximations
made in their work; see the Supplemental Material [31].)

FIG. 2. Doping dependence of spectral density. Dependence of
the spectral density A(ω) on chemical potential μ, calculated from
Eq. (1) at 200 K. The dot on each graph marks the analytic low-
temperature constraint A(ω = 0; μ) = N (μ), and the shaded region
denotes N (E ). The strong particle- (μ > 0) hole (μ < 0) asymmetry
is reflected in the simple translation of the peak for hole doping,
while for particle doping the peak structure becomes highly asym-
metric around μ.

The spectral function calculation simplifies to

A(ω; μ) =
∫

dE N (E ) |�(ω)|/π
[ω − (E − μ) − M(ω)]2 + [�(ω)]2

. (1)

This expression has the form of a Lorentzian broadening of
N (E ), but with an energy shift M(ω) and broadening �(ω)
that varies with ω. For comparison with experiment, the
chemical potential μ = μ(T ) would need to be shifted to en-
force conservation of the particle number. Near the chemical
potential where � becomes very small, this expression reduces
to a δ function, and the behavior is A(ω) ≈ N ([1 + λ]ω).
Thus the energy variation is enhanced by 1 + λ ≈ 3, which
results in the strong narrowing of the peak in A(ω) compared
to that in N (E ); this often unrecognized aspect is evident in
Fig. 1(b).

When N (E ) is constant over an energy range of a several �

as in most metals and as assumed in textbooks, redistribution
of spectral density is transparent to most probes. With sharp,
asymmetric structure in N (E ) on the scale of � the effect is
dramatic. Due to the Fermi liquid requirements listed above,
Eq. (1) gives A(ω = 0; μ) = N (E = μ), which is reproduced
in the calculation, as shown in Figs. 1(c) and 2.

We compare in Fig. 2, referenced to the underlying elec-
tronic DOS, the spectral density calculated for several band
fillings at chemical potential μ, neglecting changes in �(ω).
The very strong asymmetry around the physical band filling of
H3S is evident. For zero or negative values of μ, the spectral
density remains a strongly compressed version of N (E ) and
is displaced downward rigidly with μ across the plateau of
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FIG. 3. Spectral density of H3S in the superconducting state.
(a) Comparison at T = 0 without (black) and with (red) the self-
energy included. The strong particle-hole asymmetry across the gap
is evident. The gap 2� = 75 meV is the measured value [32].
(b) Temperature evolution of the spectral density Asc(ω) through the
T = 0–200 K range, with constant vertical shifts of the curves. The
color bar denotes the spectral intensity, and the red arrows point to
0.8 eV−1 on either side of the gap, highlighting the particle-hole
asymmetry.

N (E ). For electron doping, however, as μ passes across the
upper vHs onto the steep slope, A(ω; μ) peaks not at ω = 0
but at negative ω. Doping (μ) in effect drags the spectral
density peak along with it for up to and beyond � above
the intrinsic chemical potential. This asymmetry will induce
behaviors of thermodynamic, transport, and low-energy spec-
tra that are quite different from what would be obtained from
the bare spectrum, with the differences arising from the strong
p-h asymmetry.

C. Effect of the superconducting gap

Careful treatment of T dependences would require real-
frequency-axis solutions of generalized Eliashberg equations
(treating N (E ) [17]), which are not available. Instead, stan-
dard BCS expressions can be adopted to allow demonstration
of the implications of the vHs on the electronic spectral
density. In Fig. 3 we show the impact on N (E ) of opening

a superconducting BCS gap,

Asc(ω) =
∫

dω′A(ω′)
ω′√

(ω′ − ω)2 − �2
, (2)

with an analogous gap-opening expression for Nsc(E ) (with
ω′ → E ). The temperature dependence of the gap follows the
approximate analytic form 2�(T ) = 2�o[1 − (T/Tc)2]1/2,
with 2�o ≈ 5kBTc = 75 meV. Figure 3(a) illustrates the great
difference between Nsc(E ) and Asc(ω), each displaying the
strong particle-hole asymmetry imparted by the vHs.

Figure 3(b) displays the dependence on temperature of the
quasiparticle spectrum Asc(ω). The temperature dependence
of �(ω) can be neglected since Tc, although at a record high
value, is still low compared to phonon frequencies. The gap
remains sharp, and the spectrum remains asymmetric until it
assumes its normal-state form at Tc.

IV. THERMAL DISTRIBUTION FUNCTION

When �kn(ω) depends on k, n only through Ekn, as is rea-
sonably assumed for H3S [with the same holding for Akn(ω)],
it is simple to show [33,34] that for certain thermodynamic
properties, the effect of interactions can be transferred to the
thermal distribution function f (ω), the interacting counterpart
of the noninteracting Fermi-Dirac distribution fo(E ). In Mat-
subara space, the definition in terms of the Green’s function
leads to (kB = 1 = h̄ units, μ = 0)

f (Ekn, T ; μ) ≡ T
+∞∑

n=−∞
G(kn, iωn; μ)eiωnη

=
∫

dω f0(ω)| 1

π
ImG(kn, ω; μ)|

→
∫

dω
f0(ω)|�(ω)|/π

[ω − Ekn − M(ω)]2 + [�(ω)]2
, (3)

upon continuing back to the real-frequency axis and then
using the k-averaged, hence k-independent, self-energy. In
this equation ωn = (2n + 1)πT is the Matsubara frequency,
and η is a positive infinitesimal.

Along with the calculated spectral density, this allows one
to write the electron number in three different ways, beginning
with the noninteracting Kohn-Sham electron number N from
the first expression (EF = 0):

N =
∫

dE f0(E ; T = 0)N (E )

=
∫

dω f0(ω − μ; T )A(ω; μ) (4)

=
∫

dE f (E − μ, T ; μ)N (E ). (5)

The second relation determines μ(T ), an estimation of which
is provided in the Supplemental Material. The second and
third expressions together express that, for the (conserved)
particle number, the effect of interactions on N can be shifted
between an interacting density of states A(ω; μ) and an inter-
acting thermal distribution function f (E − μ, T ; μ). Equation
(5) is a simple example of a general result obtained by Lee
and Yang [35] that thermodynamic quantities can be obtained
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FIG. 4. Interacting thermal distribution calculated at 300 K. The
dimensionless derivative of the thermal occupation −kBT ∂ f (E−μ,T ;μ)

∂E
(red line), contrasted with that of the noninteracting Fermi-Dirac
distribution, divided by 2 to fit on the same scale (black line). Also
shown, to emphasize the difference in shape (blue line), is an interact-
ing thermal distribution calculated using a fictitious spectral density
of a Lorentzian form with a half width at half maximum of 75 meV.
Interaction not only results in the expected broadened of f (E ; μ), but
also strong asymmetry in particle-hole thermal occupation emerges.
The inset shows the broadening of the distribution function itself.

from thermal averages incorporating the interacting (versus
noninteracting) occupation number, but in momentum space
[i.e., f (�k) versus fo(ε�k )].

This interacting thermal distribution function reflects how
noninteracting states [N (E )] are sampled by the interacting
system, rather than the conventional formulation in which
interacting kernels are sampled over the noninteracting ther-
mal distribution. Figure 4 provides the derivative −T ∂ f (E ,T ;μ)

∂E .
The interacting distribution differs strongly in the region of
strong variation of N (E ). Unlike the symmetric derivative of
the Fermi-Dirac distribution, the interacting version becomes
asymmetric according to the behavior of �(E ) convoluted
with the structure imposed by the vHs. Contrary to intuition,
with interactions the thermal occupation is not limited to the
interval [0,1], although excursions outside this range will have
a limited effect.

The primary effect, shown in Fig. 4, is significant re-
distribution leading to a strong distortion from particle-hole
symmetry. To illustrate the point that the spectral function
has a form qualitatively different from Lorentzian broadening,
we also show in Fig. 4 a convolution of the noninteracting
Fermi-Dirac distribution with a Lorentzian of half width γ =
75 meV. This model (and p-h-symmetric) distribution lacks
the qualitative features of the real interacting distribution.

V. INFRARED SPECTRUM

Infrared spectroscopy is an important probe of the effects
of EPC in superconductors. While a general study of the

FIG. 5. Infrared optical conductivity of H3S. (a) Real and
(b) imaginary parts of the conductivity in the normal-state H3S, com-
paring the generalized Drude expression of Eq. (7) (solid lines) with
the noninteracting [�(ω) = 0] limit (dotted lines), at T = 200 K.
Results are shown for three values of the elastic scattering rate 1/τ .
The insets show the differences as indicated.

effect of vHs awaits further developments, something can be
said about the far infrared, where interband transitions are
negligible. Capitani et al. [32] have reported the observed
and modeled reflectivity in H3S at high pressure, observing
a structure identified with an energy scale of 160 meV, sug-
gested to be a phonon with a very strong infrared coupling
that is not evident from current theory. Given the paucity of
experiments that are possible at high pressure, this experiment
assumes an unusually strong impact.

Without EPC, the intraband optical conductivity reduces to
the Drude form σ (ω) = σo/(1 − iωτ ), where

σo = e2N (0)
v2

F

3
τ = e2

(
n

m

)
eff

τ ≡ ω2
pτ

4π
(6)
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gives the zero-frequency limit in terms of N (0) and the
mean Fermi surface velocity [5] vF = 2.5 × 107 cm/s, which
combines with N (0) to give the Drude plasma frequency
ωp = 2.8 eV for H3S. In the general expression for the
current-current correlation function that gives σ (ω), the vertex
matrix elements are simply the electron velocity vk . In the
average over the Fermi surface, the velocity factors cancel
the contributions from the vHs regions, making the ubiquitous
“constant-DOS” treatment reasonable. Allen has given the
corresponding generalized Drude (intraband) expression [36]
for an interacting system,

σ (ω) = i
ω2

p

4π

∫
dω′ [ f (ω′) − f (ω′ + ω)]/ω

ω − �(ω′ + ω) + �∗(ω′)
. (7)

The integral gives an effective τeff (ω). Results with addi-
tional elastic scattering values of 1/τ = 10, 30, 50 meV are
displayed in Fig. 5. Inelastic scattering due to EPC causes
a reduction (shown by the arrows) in the real component
of the conductivity as it approaches its static dc value at
small ω. The (1 + λ) mass enhancement shows up in the
imaginary part, where it translates to an increased slope in
the low-frequency linear regime as well as a strong reduction
in the magnitude. These results do not resolve the origin of
the feature studied by Capitani et al. [32]. The calculated
reflectivity at four values of τ is provided in the Supplemental
Material [31].

VI. SUMMARY

In this work we have demonstrated the strong impact
of large electron-phonon coupling on the fermionic spectral
density and band renormalization of the high-temperature
superconductor H3S, which causes qualitatively new and anti-
intuitive phenomena due to its interplay with the sharp and
asymmetric DOS peak at the Fermi level, caused by two
neighboring (in energy) Van Hove singularities. The picture
of a simple smeared spectral density is conceptually incorrect
and quite misleading; at low temperature, of the order of Tc or
even a little higher, the peak becomes sharper (narrower) than
the density of states peak due to the coherence that also gives
the mass enhancement effect. Peculiarly, the sharp spectral
density peak follows the chemical potential with doping, but
in a strongly particle-hole asymmetric way. In the super-
conducting regime as well, strong particle-hole asymmetry
occurs as a consequence of the Van Hove singularities. We
further elucidate the effect of electron-phonon coupling on
the infrared conductivity for consideration in interpretation of
optical data.
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