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The quasilinear bands in the topologically trivial skutterudite insulator CoSb3 are studied under

adiabatic, symmetry-conserving displacement of the Sb sublattice. In this cubic, time-reversal and

inversion symmetric system, a transition from trivial insulator to topological point Fermi surface system

occurs through a critical point in which massless (Dirac) bands appear, and moreover are degenerate with

massive bands. Spin-orbit coupling, while small due to the type of band character, coupled with tetragonal

strain opens the gap required to give the topological insulator. The mineral skutterudite (CoSb3) is very

near the critical point in its natural state.
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The topological properties of crystalline matter have
become a central feature in characterizing the electronic
structure of small gap, primarily binary, semiconductors
[1–4]. Skutterudite compounds, many of which have small
gaps, have received a great deal of interest in the past two
decades. Most recently emphasis has been on the ‘‘filled’’
version in which atoms are incorporated in the large holes
in the original skutterudite (CoSb3) structure, which can
become unusual heavy fermion correlated metals and even
superconductors [5]. The earlier interest was in their trans-
port properties [6]. As small gap semiconductors, many of
them were of potential interest in solid state devices, and
application as thermoelectric materials [7,8] was a strong
interest.

A study of the electronic structure [9] uncovered a very
peculiar feature of some of them: there are linear valence
and conduction bands that extended from well out in the
Brillouin zone, changing to quadratic only very near the
zone center k ¼ 0. This quasilinear dispersion produces
peculiar consequences: the density of states behaves as "2

near the band edge rather than the usual three dimensional
(3D) form

ffiffiffi
"

p
; the carrier density scales differently with

Fermi energy "F; the inverse mass tensor rr"k is entirely
off-diagonal corresponding to an ‘‘infinite’’ transport mass;
the cyclotron mass is different from usual 3D behavior, etc.
All of this was unique and was potentially very useful in
applications, but theoretical excitement was tempered
because the quasilinear dispersion, which was clearest in
IrSb3, finally became quadratic very near k ¼ 0, just as
textbooks claim must be the case.

Since then, a 2D analog graphene has been isolated and
its ‘‘Dirac point’’ with linear dispersion has been studied
comprehensively [10,11]. The Dirac point of graphene
however occurs at a zone corner point where symmetry is
much lower than at the zone center, and its occurrence does
not violate textbook conventional wisdom. Here we show
that in the skutterudite system small adjustments in the
structure produce a critical point at which strictly linear

bands extrude from j ~kj ¼ 0. This does not violate any real

principle, however it does violate the commonly used
expansions. The linear behavior reflects nonanalytic be-

havior in the ~k ! 0 limit, resulting from an accidental (but
tunable) degeneracy. In this Letter we illustrate how to tune
to this critical point, provide a simple model that reprodu-
ces the behavior, and demonstrate that the transition cor-
responds also to a trivial to topological insulator.
The skutterudite structure, pictured in Fig. 1, in the

space group Im�3 (#204), has a simple cubic Bravais lattice,
and is comprised of a bcc repetition of 3 formula units (f.u.)
when expressed as TPn3. The pnictide (Pn) atoms form
bonded units (nearly square but commonly designated as
rings) which are not required by local environment or
overall symmetry to be truly square; therefore they are
not although very nearly so. The three Pn4 squares in the
primitive cell are oriented perpendicular to the coordinate
axes. Transition metal (T) atoms (Co, Ir, . . .) lie in six of

FIG. 1 (color online). Crystal structure of skutterudite CoSb3,
space group Im�3 (#204). The experimental lattice constant is
a ¼ 9:0385 �A and the internal position coordinates are u ¼
0:335, v ¼ 0:1575. The Co site (small pink sphere) is octahe-
drally coordinated to Sb atoms (small yellow spheres), each of
which connects two octahedra. The large (blue) sphere denotes a
large open site which is unoccupied in CoSb3; the surrounding
solid (center of figure) gives an idea of the volume and shape of
the empty region.
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the subcubes of the large cube of lattice constant a3; the
other two subcubes (octants) centered at sites 2a are empty.
The structure is symmorphic, with 24 point group opera-
tions; the one that is missing is reflection in (110) planes.
This space group leads to some interesting band behavior
but is not relevant to the behavior we discuss in this Letter.
The related filled skutterudites XT4Pn12 have an atom X
incorporated into the large 2a site of 3 �m symmetry.

A relevant structural feature is that skutterudite is related
to the perovskite structure hTPn3 (h denotes an empty A
site). Beginning from perovskite, a rotation of the octahe-
dra keeping the Pn atoms along the cube faces and the
octahedra connected results in the formation of the (nearly
square) Pn4 rings, and the Pn octahedra become distorted
and less identifiable as a structural feature. The transfor-
mation is, in terms of the internal coordinates u and v,

u0 ¼ 1
2 þ sðu� 1

2Þ; v0 ¼ 1
2 þ sðv� 1

2Þ: (1)

The transformation path, from perovskite for s ¼ 0 to the
observed structure for s ¼ 1, is pictured in Fig. 1 of
Ref. [12]. Below we make use of this transformation to
understand the opening of the (pseudo)gap between occu-
pied and unoccupied states and to tune an unusual
transition.

Evolution through a critical point.—The electronic
structure of skutterudites has been of keen interest since
the quasilinear bands (QLB) near the zone center were
uncovered by Singh and Pickett [9]. The skutterudites
that are isovalent with CoSb3 are very narrow gap semi-
conductors (or possibly very small negative gap semime-
tals, or point Fermi surface zero-gap materials, viz. IrSb3
[9]). In following the band structure along the perovskite-
to-skutterudite structural path given above, it is found that
the gap at the Fermi level only opens up near the end of the
transformation (s� 0:90–0:95), where the Sb4 rings
approach their equilibrium size and the empty 2a site is
fully developed into a large interstice. Only near s� 1
does the quasilinear band emerge from the dense spaghetti
of occupied valence Sb 4p and Co 3d bands. Analysis of
the band character, projected density of states (DOS), and
charge density indicates no Co 3d character and very little
Sb 4p character in the quasilinear bands, which arise from
Bloch states (one on either side of the gap) associated with
Sb 5s states with some charge extending into the large
empty 2a site.

To illustrate the progression of the band structure
through a critical point at which a Dirac point (with
Dirac hypercone) appears, we provide in Fig. 2 the behav-
ior of the bands for s ¼ 1:020, 1.023, 1.025, corresponding
to just before, precisely at, and just beyond gap closing. At
zero gap, the QLBs become precisely linear (Dirac) bands
emanating from the zone center. Because one of them is
degenerate (by crystal symmetry) with two other bands in a
threefold set, this Dirac point is degenerate with two
conventional (massive) conduction bands. Beyond the

critical point scr ¼ 1:023, the singlet lies above the triplet,
and the Fermi level lies at a symmetry-determined, point
FS energy comprised of one hole and two electron bands.
While beyond the critical point these bands are all
‘‘massive’’ in the rigorous sense, immediately beyond the
transition the masses of both quasilinear (valence and
conduction) bands arise continuously from zero mass to
the linear behavior that extends as far as the bands can be
followed before they helplessly mix with and disappear
into the background spaghetti.

FIG. 2. Bands near k ¼ 0 in skutterudite CoSb3, showing the
band crossing as the valence band rises due to the variation of the
Sb coordinate, through the critical point of quadruple degeneracy
of a Dirac pair and a conventional band pair. Top: before
transition, s ¼ 1:020. Middle: at the critical point, s ¼ 1:023.
Bottom: just after the transition, s ¼ 1:025.
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At first sight, the basic underlying feature seems to be
provided by two states at �"0 on some scale, which will
become degenerate ("0 ¼ 0) at the critical point. Although
the two-band [13] Kane model has been used to represent
the bands of CoSb3, it fails to give the linear dispersion at
arbitrarily small k as the gap vanishes, so some other
picture must be constructed. While the bands are required
to have only cubic—not spherical—symmetry, the linear
bands for CoSb3 are in fact isotropic well out into the zone,
that is, the velocity is indistinguishable in all three high
symmetry directions. The simplest viewpoint is that two

bands are linearly coupled (hij / vj ~kj for i � j) at small

j ~kj � k, in which case the eigenvalues are

"k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"20 þ ðvj ~kjÞ2

q
! �vj ~kj; (2)

giving the desired two linear bands upon degeneracy
("0 ! 0).

So how does one obtain the desired coupling? The
easiest way to get linear coupling at small k, in a tight-
binding picture, is from a coupling such as tðsin kxaþ
sin kyaþ sin kzaÞ on the off-diagonal. However, expand-

ing this coupling for small k ðkx þ ky þ kzÞ does not give
isotropic coupling. What could give isotropic coupling?

The skutterudite structure, which has bcc translational
symmetry with coupled Sb4 ring 5p orbitals and large
empty holes in the lattice that may harbor an s-like orbital
in its well, can be modeled with a p triplet coupled to
s-symmetry states on the bcc neighbors. Working in a
picture where the p triplet is diagonalized at k ¼ 0, the
coupling of the px function with the bcc-situated s orbitals
gives

Tx � Tðkx; ky; kzÞ ¼ 8it sin
kxa

2
cos

kya

2
cos

kza

2
(3)

and symmetrically for coupling of py and pz partners. Then

using on-site energies "s and "p, the tight-binding

Hamiltonian is

H ¼
"s Tx Ty Tz

T�
x "p 0 0

T�
y 0 "p 0

T�
z 0 0 "p

0
BBB@

1
CCCA (4)

with eigenvalues

"j ¼ "p; "p;
"s þ "p

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
"s � "p

2

�
2 þ jTj2

s
;

(5)

where jTj2 � jTxj2 þ jTyj2 þ jTyj2. To first order in k and

and at the critical point "s ! "p, this result gives

(i) fourfold degenerate bands " ¼ "p at k ¼ 0 (where T

vanishes), (ii) two bands have isotropic linear dispersion
"p � vk with v ¼ 4ta, (iii) the other two bands are flat in

Eq. (4), but will acquire finite mass by the smaller p-p

hopping that has been neglected for simplicity. For
j"p � "sj, threefold degeneracy is preserved at k ¼ 0.

This model faithfully reproduces the behavior in CoSb3
in Fig. 2 as the Sb rings are varied in size adiabatically.
A number of works [14–16] have pointed out that insu-

lators in 3D, as well as in 2D, can be characterized by
topological invariants, and Fu and Kane followed by dem-
onstrating [17] that when inversion symmetry is present (as
in space group Im�3), the Z2 invariant can be obtained from
the parities of the occupied states at the invariant momenta.

FIG. 3. Bands as in Fig. 2, with s ¼ 1:010, 1.019, 1.020 and
with spin-orbit coupling included. Although the threefold ‘‘p’’
band degeneracy is split by SOC, the Dirac bands and hypercone
survive, though the lower (hole) band mixes with one of the
massive bands very close to k ¼ 0.
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Here only the � point requires consideration, since reoc-
cupation occurs only there. The lower band in Fig. 2 has
odd parity at � while the triplet is even. The product of
parities (at �, and at all time-reversal momenta), is posi-
tive, so CoSb3 is the expected trivial insulator. As the
critical point is crossed, the product of the parities of the
occupied bands at �, and hence the Z2 invariant, changes
sign, the signal of a transition to a topological insulator.
This change also reveals that the transition is associated
with the entanglement of the odd symmetry valence band
with an even parity conduction band that has the same
symmetry away from �, and hence mixes with. The final
state at this level is actually gapless; it is a (point Fermi
surface) zero-gap semiconductor, with the mass of the
lowest band rising from zero and giving rise to extremely
light mass carriers in the limit of low hole doping. The
system rendered a true topological insulator by strain (lift-
ing of the band degeneracy).

Effect of spin-orbit coupling and tetragonal strain.—The
system is rendered a true topological insulator by SOC and
tetragonal strain. In Fig. 3 the effect of intrinsic (relativis-
tic) SOC for the cubic system is shown. The triplet is split
(by 40 meV) into a lower energy doublet and higher energy
singlet. At the critical point ssoccr ¼ 1:019 (it is slightly
reduced by SOC) the (formerly) valence band singlet has
crossed the twofold level and become degenerate with the
conduction singlet, giving rise to a Dirac point involving
the two upper bands which are now separated from the
doublet. Thus the Dirac band behavior survives the inclu-
sion of SOC. To make topological aspects completely
clear, we have studied small tetragonal distortions (c=a�
1:01) that lift the last degeneracy at � (which pins the
Fermi level in Fig. 3). This symmetry breaking opens a
gap, and we have verified using the criterion of Fu and
Kane [17] that scr indeed separates a trivial insulator from a
topological insulator.

Summary.—We have established that the trivial insula-
tor to topological zero-gap semiconductor occurs simul-
taneously with the appearance of a Dirac point at k ¼ 0,
which is degenerate with conventional (massive) bands at
the critical point. This transition occurs in a band structure
that is unusually uncomplicated compared to many of the
reported topologically insulating systems. The appearance
of the Dirac point at k ¼ 0 is clarified using a tight-
binding model, being due to the tuning of a degeneracy
of site energies of the orbitals that are involved. A small

uniaxial strain, externally applied or resulting from epi-
taxial growth on a substrate with some lattice match, is
required to lift the cubic-lattice degeneracy and produce
the topological insulating state.
It is worthwhile to note that this ‘‘robust’’ topological

state is delicate with respect to the Sb sublattice position:
the transition occurs discontinuously at s ¼ scr upon con-
tinuous, symmetry-preserving change of the Sb coordinate.
Such a situation will allow probing into just which (bulk or
surface) properties are associated with the topological
nature of the bulk electronic state. Of course, there are
many properties that change discontinuously at an
insulator-to-metal transition, so effects of topologicality
will require more detailed study.
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