Supplementary materials for Perovskite ThTaN₃: a Large Thermopower Topological Crystalline Insulator

Myung-Chul Jung¹, Kwan-Woo Lee^{1,2}, and Warren E. Pickett³

¹Department of Applied Physics, Graduate School, Korea University, Sejong 30019, Korea

²Division of Display and Semiconductor Physics, Korea University, Sejong 30019, Korea

³Department of Physics, University of California, Davis, California 95616, USA

I. TOPOLOGICAL PROPERTIES

In this brief Supplemental Material file, first we provide more evidence of the topological crystalline insulator character of ThTaN₃. One type of evidence involves the number of hybrid Wannier center crossings (HWCC) across the zone. Figure 1 reveals two crossings, an even number representative of a topological crystalline insulator (TCI).

FIG. 1: (Color online) Hybrid Wannier charge center (red, thick lines) plot of ThTaN₃ across half of the Brillounin zone in the $k_z = 0$ plane, showing an even number of crossings between the charge center and largest gap function. The blue (thin) line denotes largest gap function. Here, the wave vector k along the (100) direction is given in unit of π/a .

It was noted in the main text that destruction of mirror or 4-fold rotation symmetries destroyed the TCI character. In Fig. 2 the band structures are displayed after destruction of these symmetries by displacement of the Ta ion.

FIG. 2: (Color online) Enlarged GGA+SOC band structures, near the Fermi energy E_F , for breaking (a) only mirror and (b) both mirror and rotational symmetries.

II. THERMOELECTRIC PROPERTIES

Additionally, thermoelectric parameters of ThTaN₃ are calculated by a constant scattering time approximation τ . The results are shown in Fig. 3. Note that these include only electronic contributions. Thus, the figure of merit $zT = S^2 \sigma(E,T)/\kappa_{el}(E,T)$, given here, is an upper bound.

FIG. 3: (Color online) (a) Electric σ and (b) electronic thermal κ_{el} conductivities, divided by the scattering time $\tau = 0.8 \times 10^{-14}$ sec. (c) Power factor and (d) figure of merit, contributed by electrons.