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1. INTRODUCTION

The isolation of single layers of graphite (graphene) with its unique linear (“Dirac-Weyl”)

low energy band structure has become, within only a few years, a heavily studied phenomenon.[12,

13] The appearance of unanticipated new features in band structures, which generally have

far-reaching implications, have in the past included half metallic ferromagnets and com-

pensated half metals (“half metallic antiferromagnets”), and more recently topological

insulators. Each of these provide the promise of not only new physical phenomena but

also new applications of these properties.

Another key feature of graphene is the point Fermi surface aspect. The touching (or

crossing) of bands is accompanied by a gap throughout the rest of the Brillouin zone that

pins the Fermi level (EF ) in the intrinsic material to lie precisely at the point of crossing

– the point Fermi surface (two of them in graphene). This point Fermi surface aspect

has been well studied[17] in conventional zero gap semiconductors where a touching of the

valence band maximum and conduction band minimum is symmetry determined and occurs

at a high symmetry point. The dielectric susceptibility of such a system is anomalous[3]

– not metallic and not semiconducting in character – and unusual consequences of the

touching bands and residual Coulomb interaction promise unusual phases, such as excitonic

condensates or even excitonic superconductors.

The linear dispersion at the zone boundary in graphene has been known for many

decades; it took the ability to prepare the delicate material and perform a variety of

experiments to ignite interest. There are quasilinear (and potentially truly linear) band

structure features in certain materials, viz. skutterudites,[4] that have been known for

some time and with recent developements[5] may attract new attention. To actually

discover a feature in a band structure that provides the quasiparticle dispersion of a new



and unexpected type is rare, and the discovery of a “semi-Dirac” dispersion pinned to the

Fermi energy is a very recent example.

Pardo et al.[33, 34] reported such a finding in ultrathin (001) VO2 layers embedded

in TiO2. This new point Fermi surface system, dubbed ‘semi-Dirac,’ is a hybrid of con-

ventional and unconventional: dispersion is linear (“massless”, Dirac-Weyl) in one of the

directions of the two-dimensional (2D) layer, and is conventional quadratic (“massive”

Dirac) in the perpendicular direction. At directions between the axes the dispersion is in-

termediate and highly direction-dependent. Interest in this unique, maximally anisotropic,

dispersion arises for several reasons. The (topologically determined pinning at the) point

Fermi surface is itself of interest. The highly anisotropic dispersion (from massive to

massless depending on angle) is unique to this system. The fact that it arises in an ox-

ide nanostructure of the general type that is grown and studied regularly these days also

strengthens the promise of applications. Another layered superstructure, a double cell

layer of Ti3SiC2 embedded in SiC, has displayed a point Fermi surface, but the dispersion

is of the convention type.[6]

Such a spectrum had been noted earlier in different contexts. Volovik obtained such

a spectrum at the point node in the A-phase of superfluid He3 [7] and studied its topo-

logical robustness.[8] More relevant to solids was the discovery by Montambaux’s group of

this spectrum in a graphene-like model.[50] The model has a broken symmetry such that

hopping to two nearest neighbors is t but to the third neighbor is t′. When t′ differs from

t, the graphene “Dirac points” wander away from the K and K ′ points, and at t′ = 2t

they merge, resulting in the semi-Dirac spectrum. This group began a study of low en-

ergy properties of such a system[51], which was continued by Banerjee et al.[42] and was

extended in [66].
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2. MATHEMATICAL INTRODUCTION TO THE SEMI-DIRAC DISPERSION

2.1 Semi-Dirac Dispersion

In condensed matter physics properties of a material depends on how an electron moves

in a material. An electron is a quantum mechanical object and hence its dynamics is

described not by Newton’s equation, but Schrodinger’s equation. None the less, when

the positively charged ions are arranged in a periodic structure inside material, the final

expression for the energy of an electron is dispersive, i,e varies with the momentum and

in simple cases looks formally very similar to the that of an object moving in the free

space under Newton’s law of motion. As Feynman said, in his lecture on ‘Propagation in

a Crystal Lattice’ [26], “...it is a ubiquitous phenomenon of nature that if the lattice is

perfect, the electrons are able to travel through the crystal smoothly and easily–almost as

if they were in vacuum. this strange fact...has also permitted the development of many

practical devices. It is, for instance, what makes it possible for a transistor to imitate the

radio tube. In a radio tube electrons move freely through a vacuum, while in the transistor

they move freely through a crystal lattice.” The reason for this apparent similarity can

be explained by a simple but insightful model called the tight-binding model. In spite of

this remarkable analogy between the energy momentum dispersion in free-space and that

in a periodic lattice, one must remember that it comes out so as a consequence of solving

quantum mechanical equations. There can be materials for which the quantum mechanical

calculation gives a very different energy momentum dispersion. For example, in case of

graphene the dispersion is linear instead of being quadratic. The semiDirac dispersion is

quadratic along one symmetry direction in the Brillouin zone and linear along the direction

perpendicular to it. Choosing kx and ky to be the momentum variables along the quadratic



direction and the direction perpendicular to it respectively, the semi-Dirac dispersion is

given by:

εk = ±
√

[ h̄2k2
x

2m

]2 +
[
h̄vky

]2 (2.1)

where the effective mass m applies along kx and v is the velocity along ky. Two natural

scales are introduced, one for the momentum and the other for the energy: p = 2mv

(momentum scale) and ε0 = 2mv2 = 2pv. (Untidy factors of 2 appear because of the

differences in the natural classical 1
2pv and relativistic pv units for energy.) One can then

define the dimensionless momenta Kx = h̄kx
p and Ky = h̄ky

p in terms which the semi-Dirac

dispersion given by Eq. 2.1 becomes

εk = ±ε0

√
K4

x + K2
y . (2.2)

Thus all possible semiDirac points (all possible m and v combinations) scale to a single

unique semiDirac point, with the materials parameters determining only the overall energy

scale. There is no limiting case in which the semiDirac point becomes either a Dirac point

or a conventional effective mass zero-gap semiconductor.

2.2 Density of states

The density of states for a system with a two dimensional dispersion is given as

D(ε) =
∫

d2k
(2π)2

δ(ε− εk). (2.3)

Using Eq. 2.2 in Eq. 2.3, one obtains the following expression for the density of states

for the semi-Dirac dispersion.

D(ε) =
√

2mε

π2h̄2v
I1, (2.4)
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where I1 is a dimensionless number given by

I1 =
∫ 1

0
dk′x(1− k′x

4)−
1
2 ≈ 1.3110. (2.5)

To arrive at Eq. 2.4, the following trick was used: instead of directly computing D(ε),

a quantity g(ε) =
∫

d2k
(2π)2

δ(ε2 − εk
2) was first computed. Since it involves εk

2 instead

of εk, g(ε) is easier to compute. Finally, using the relationship between D(ε) and g(ε),

which is given by D(ε) = 2εg(ε) Eq. 2.4 was obtained. For the semi-Dirac dispersion the

density of states ∼ ε
1
2 . For comparison, the density of states D(ε) is constant (i,e ∼ ε0) for

effective mass systems and goes as |ε| for Graphene. Now 1
2 (the power of the energy that

appears in the density of states expression for the semi-Dirac dispersion), is in between

0 and 1, which appear in the density of states for the other two dispersions. Hence the

the semi-Dirac dispersion is intermediate so far as the energy dependence of the density

of states is concerned.

2.3 Velocity:k-space Distribution and Fermi Surface Averages

Since a semi-Dirac dispersion is Dirac like in one direction and massive in the direction

orthogonal to it, its velocity distribution in the momentum space is of particular interest.

For the Dirac dispersion the velocity is everywhere constant in magnitude. In case of

the parabolic dispersion, the magnitude of the velocity vector increases linearly with the

magnitude of k. Given an energy momentum dispersion εk, the velocity is given by

vk = h̄−1∇kεk. For the semi-Dirac dispersion, the velocity can be scaled to a dimensionless

form VK defined as

vk =
ε0

p
∇KξK = vVK, (2.6)

where ~VK is ∇KξK . Writing explicitly in terms of components,
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VK =
2K3

x√
K4

x + K2
y

K̂x +
Ky√

K4
x + K2

y

K̂y (2.7)
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Fig. 2.1: Surface and contour plots of the dimensionless semi-Dirac velocity. The velocity has a
singularity at (KX = 0,KY = 0). The velocity changes monotonically from a constant
value to a linear dispersion as one goes from the KY (relativistic) direction to KX(non-
relativistic) direction.

From Eq. 2.7, the magnitude of the dimensionless velocity vector of the semi-Dirac

dispersion is obtained as follows.

|VK| =
√

(VK)2x + (VK)2y =

√
4K6

x + K2
y

K4
x + K2

y

(2.8)
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Fig. 2.2: Contours of the Fermi surfaces change from being elongated along the non-relativistic
direction to those elongated in the relativistic direction with the increase of the total
energy. The arrows indicate the vector VK. The length of an arrow is proportional to
the magnitude of VK. As can be seen from the figure, the length of an ‘velocity-arrow’
is constant along the Ky axis indicating a constant velocity. The velocity vectors are all
normal to the constant Fermi energy contours, as they should be.

Figures 2.1 and 2.2 illustrate the velocity distribution of semi-Dirac dispersion. Fig.

2.2 also shows the evolution of the constant energy contours with change in Fermi energy.

2.4 Fermi-surface velocity averages for the semi-Dirac dispersion

Apart from being interesting itself, the average of the Fermi surface velocity will prove to

be useful in later calculations, and also in the semi-classical expression for the conductivity

tensor, given by σαβ = e2τD(ε)〈vαvβ〉, where D(ε) is the density of states. Due to the

anisotropy in the semi-Dirac dispersion, the average Fermi-surface velocities will be differ-
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ent in different directions. Hence 〈v2
x〉 and 〈v2

y〉, the averages of the Fermi surface velocities

squared in the non-relativistic and the relativistic directions respectively, are separately

computed. They are defined as follows

〈v2
x(y)〉 =

1
2π2h̄D(ε)

∫
dkt

v2
x(y)

|vk| , (2.9)

Using Eq. 2.4 and Eq. 2.6 in Eq. 2.9, one obtains

〈v2
x〉 =

4I3

I1

ε

m
, (2.10a)

〈v2
y〉 =

I2

I1

ε0

m
, (2.10b)

where I2 and I3 are given by

I2 =
∫ 1

0
dk′x(1− k′x

4)
1
2 ≈ 0.8740, (2.11a)

I3 =
∫ 1

0
dk′x

k′x
6

(1− k′x
4)

1
2

≈ 0.7189, (2.11b)

From Eq. 2.10a it is observed that 〈v2
x〉 depends linearly on the the energy ε. For a non-

relativistic parabolic dispersion, the average Fermi surface velocity shows the same kind of

mathematical relationship with energy. In our problem x is the non-relativistic direction,

hence the equivalence. 〈v2
y〉, the average Fermi-surface velocity squared in the relativistic

direction, assumes a constant value as is evident from Eq. 2.10b. This agrees with the fact

that the average Fermi surface velocity is constant for a linear Graphene-like dispersion.

From Eq. 2.10a and Eq. 2.10b it is observed that the ratio of 〈v2
x〉 to 〈v2

y〉 scales as ε/ε0,

which is small (for the VO2 system only very small doping levels will remain within the

energy range represented by the semi-Dirac dispersion, so ε
ε0
∼ 10−4 or less). In other

words, for V O2 like semi-Dirac system the average velocity in the relativistic direction (y)

is much larger than that in the non-relativistic direction (x). The high anisotropy in the

average Fermi surface velocities is a characteristic of the semi-Dirac dispersion and not

12



shared by either Dirac or parabolic dispersion.
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3. TIGHTBINDING DESCRIPTION OF THE SEMI-DIRAC DISPERSION

In this section a tight-binding model is developed for the semi-Dirac dispersion. A tight-

binding model gives a simple description of the behavior of an electron inside a material.

Assuming that the atoms are arranged in a periodic structure, the tight-binding model

utilizes the fact that there are overlaps of the wave functions of an electron at different

sites of the lattice.

In the following is given a 3-band tight-binding model of spinless fermions (correspond-

ing to the half-metallic VO2 trilayer ) on a square-lattice, defined by the Hamiltonian

H =
∑3

α=1(
∑

i εαni,α +
∑

<i,j> tα(c†i,αcj,α + h.c.)) (3.1)

+λ1
∑

<i>(c†i,1ci+x̂,3 − c†i,1ci+ŷ,3 + h.c.)

+λ2
∑

<i>(c†i,2ci+x̂,3 − c†i,2ci+ŷ,3 + h.c.)

with ε3 >> ε1, ε2, so that there are two overlapping bands 1 and 2, with no coupling

between them. Instead, they couple through the third band, through a coupling which

changes sign under rotation by 90 degrees. Such a coupling can be shown to arise by

symmetry between d and s orbitals. However, since the third band is far from the Fermi

energy, it can be taken as dispersionless. Furthermore, without affecting any essential

physics, it is assumed that t1 = −t2 = t and λ1 = λ2 = t′. Thus in momentum space, the



Hamiltonian becomes a 3× 3 matrix:

H =




ε̃1k 0 Vk

0 ε̃2k Vk

Vk Vk ε3




(3.2)

where the dispersions and coupling are given by

ε̃1k = ε1 + 2t(cos kx + cos ky) (3.3a)

ε̃2k = ε2 − 2t(cos kx + cos ky) (3.3b)

Vk = 2t′(cos kx − cos ky). (3.3c)

Supposing orbital 3 to be distant in energy, the three-orbital problem can be downfolded

to a renormalized two orbital problem which becomes (neglecting a parallel shift of the

two remaining bands)

H =




ε̃1k
V 2

k
ε3

V 2
k

ε3
ε̃2k


 (3.4)

The eigenvalues Ek± of H are given by

Ek± =
ε̃1k + ε̃2k

2
± 1

2

√
(ε̃1k − ε̃2k)2 + 4[

V 2
k

ε3
]2 (3.5)

The two energy bands given by Eq. 3.5 will be equal and hence touch at a point when the

expression inside the square root sign is zero. (ε̃1k− ε̃2k)2 + 4[V 2
k

ε3
]2 = 0 implies each of the

squared terms being zero, as given by the following equations.

ε̃1k − ε̃2k = 0 (3.6a)

Vk = 0 (3.6b)
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From Eq. 3.3c and Eq. 3.6b one obtains ky = kx(Only the first quadrant is considered

without any loss of generality; without that restriction there will be four such points in

the Brillouin zone.) That is, the two bands touch at the point ~ksd ≡ (k0, k0) along the

(1,1) lines where ε̃1k0 = ε̃2k0 , otherwise the two bands lie on either side of the touching

point(the Fermi energy). From Eq. 3.3c, Eq. 3.6a and Eq. 3.6b one obtains the following

expression for k0:

k0 = cos−1(
ε2 − ε1

8t
). (3.7)

For k0 to have a real solution, the argument of the inverse cosine function in the right side

of Eq. 3.7 should be less than one. That imposes some (not very stringent) restrictions on

ε1−ε2 and t. The Hamiltonian given by Eq. 3.4 is expanded about ~ksd along (1,1) direction,

and the direction transverse to it. To that end ε̃1k, ε̃2k, and Vk are expanded along both the

directions. Expanding ε̃1k, ε̃2k, andVk
2/ε3 in the (1,1) direction, the following expressions

are obtained

ε̃1k ≈ ε1 + ε2

2
− (2

√
2t sin kx0)δk‖ (3.8a)

ε̃2k ≈ ε1 + ε2

2
+ (2

√
2t sin kx0)δk‖ (3.8b)

Vk
2/ε3 = 0, (3.8c)

where δk‖ is the distance along (1, 1) direction. Expanding the same quantities along the

orthogonal direction it is found that the first order changes in ε̃1k and ε̃2k are zero, but

that in Vk is nonzero. Hence unlike Eq. 3.8c, Vk
2/ε3 is given by

Vk
2/ε3 ≈ 8t′2

ε̃3
sin2 kx0δk

2
⊥, (3.9)

where δk⊥ is the distance along the orthogonal direction. Defining two constants m, and

v as h̄2

2m ≡ 8t′2
ε̃3

sin2 kx0 , and h̄v ≡ 2
√

2t sin kx0 [The motivation for doing so will be clear

16



from Eq. 3.12], Eq. 3.8 and Eq. 3.9 become

ε̃1k ≈ ε1 + ε2

2
+ h̄vδk‖ (3.10a)

ε̃2k ≈ ε1 + ε2

2
− h̄vδk‖ (3.10b)

Vk
2/ε3 = 0 (3.10c)

and

Vk
2/ε3 ≈ h̄2

2m
δk2
⊥. (3.11)

Using Eq. 3.10 and Eq. 3.11 in Eq. 3.4, the following expression for the Hamiltonian is

obtained

H =




ε1+ε2
2 + h̄vδk‖ h̄2

2mδk2
⊥

h̄2

2mδk2
⊥

ε1+ε2
2 − h̄vδk‖


 (3.12)

Relabeling h̄δk⊥ as q1 and h̄δk‖ as q2, and ignoring a constant shift in energy in the

diagonal elements of the Hamiltonian in Eq. 3.12, it takes the following form

H =




vq2 q2
1/2m

q2
1/2m −vq2


 (3.13)

where q2 and q1 denote the distance from ~ksd along the (1,1) symmetry direction, and the

orthogonal (1,1̄), respectively. The Fermi velocity v and effective mass m can be related

explicitly to the tight binding model parameters, and also calculated by standard ab initio

techniques. The eigenvalues of H are given by

Eq± → ±
√

(q2
1/2m)2 + (vq2)2. (3.14)

17



In terms of Pauli matrices Eq.3.13 can be written in the following way:

H = τz(vq2) +
1

2m
(q1)2τx. (3.15)

Another observation is that the same bands Eq± can be obtained from related but distinct

low-energy models, such as

H2 =




vq2 iq2
1/2m

−iq2
1/2m −vq2


 (3.16)

and

H3 =




0 q2
1/2m + ivq2

q2
1/2m− ivq2 0


 (3.17)

Although the bands resulting from H2 and H3 are the same, the eigenfunctions are different

and are intrinsically complex for H2 and H3 unlike the eigenfunctions of the Hamiltonian

given by Eq. 3.13. This particular aspect will be revisited in chapter 7.
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4. SEMI-DIRAC SYSTEM IN A MAGNETIC FIELD

One of the issues of most interest to semi-Dirac systems is the behavior in a magnetic

field. In this chapter the effect of the magnetic field on the semi-Dirac electrons will be

described. This chapter draws on the papers [42] and [66] mentioned in the references.

4.1 Landau Like Quantized Energy Levels

The quantized energy levels of an electron with a parabolic dispersion in a magnetic field

are called the Landau levels (L.L s). For the parabolic dispersion, the dependence of the

L.L s on the magnetic field and the quantum number n have been worked out. In this

section an expression for the Landau like energy levels for the semi-Dirac dispersion are

found. The cyclotron orbit that a semi-Dirac electron would follow in a magnetic field is

calculated and the phenomenon of Faraday rotation is investigated.

Making the usual substitution ~q → ~p + e
c
~A with momentum operator ~p and vector

potential ~A in the Hamiltonian given by Eq. 3.15, the Landau gauge ~A = B(−x2, 0, 0) is

found to be the most convenient here. The Hamiltonian in Eq. 3.15 then becomes

H = τz(vq2) +
1

2m
(p1 − e

c
Bx2)2τx (4.1)

= τz(−ih̄v
∂

∂x2
) +

h̄2

2m
(p1 − e

c
Bx2)2τx,

where q1 and q2 are the momentum space co-ordinates of the corresponding real space

co-ordinates x1 and x2 respectively. A length scale L is introduced in the above problem,

which will simplify the subsequent calculations. Also the dimensionless variable x̃2 is

introduced, such that x2 = Lx̃2, and x1 = Lx̃1. With the introduction of the length scale



the Hamiltonian in Eq. 4.1 becomes

H = (−ih̄
v

L
)τz

∂

∂x̃2
+

1
2m

(p1 − e

c
BLx̃2)2τx (4.2)

= (−ih̄
v

L
)τz

∂

∂x̃2
+

1
2m

(
e

c
BL)2(x̃2 − p1

e
cBL

)2τx.

The length scale L is determined in such a way that the first two terms of Eq. 4.2 have

the same dimension. To that end h̄v
L in the first term is equated to 1

m( eBL
c )2 in the second

term. The length scale thus obtained is

L =
mvh̄

( eB
c )2

. (4.3)

In the following it is shown that the length scale in Eq. 4.3 can be obtained in a rather

natural way. A natural unit of momentum p = 2mv has already been defined in the

context of semi-Dirac dispersion. The corresponding length scale is l = h̄/p. Introducing

the atomic unit of magnetic field B◦ such that µBB◦ = 1 Ha, and the dimensionless field

b = B/B◦, it can be shown that

L = (
1√
2γb

)
2
3 l, (4.4)

where γ is the dimensionless ratio of the two natural energy scales: γ = µBB◦/ε0, ε0 being

the energy scale previously introduced in the context of the semi-Dirac dispersion. For the

case of trilayer VO2, γ does not differ greatly from unity. With the length scale defined

above, and introducing a new dimensionless variable u ≡ x̃2 − p1
e
c
BL , the Hamiltonian in

Eq. 4.2 reduces to

H = h̄
v

L
(−i

∂

∂u
τz + u2τx), . (4.5)

The only dimensional factor appearing in Eq. 4.5 is the overall multiplicative factor h̄ v
L .

Using Eq. 4.4 for L, h̄ v
L becomes (

√
2γb)

2
3 ε0. Hence the Hamiltonian in Eq. 4.5 can also
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be written as

H = (
√

2γb)
2
3 ε0(−i

∂

∂u
τz + u2τx) (4.6)

≡ (
√

2γb)
2
3 ε0h.

The dimensionless Hamiltonian h in Eq. 4.6 is given by

h = −i
∂

∂u
τz + u2τx. (4.7)

The goal is to find out the eigenvalues of h. The problem of diagonalization is simplified

considering h2 instead of h as is shown below. Using the properties of the Pauli matrices,

e.g, τ2
x = τ2

z = I, τzτx = −τxτz = iτy etc, one can show

h2 = − ∂2

∂u2
+

1
4
u4 +

1
2
τy[

∂

∂u
, u2]. (4.8)

Using the fact that [ ∂
∂u , u2] = 2u, Eq. 4.8 reduces to

h2 = − ∂2

∂u2
+

1
4
u4 + uτy. (4.9)

τy having eigenvalues of ±1, finding the eigenvalues of h2 is equivalent to finding the

eigenvalues of the following two operators

h2 = − ∂2

∂u2
+

1
4
u4 ± u (4.10)

It is instructive to note that h2 appearing in Eq. 4.10 can be written as Q†Q, where

Q = −i ∂
∂u + iu2

2 , a linear combination of u and its conjugate variable pu ≡ −i ∂
∂u , or QQ†

depending on whether the plus or the minus sign is considered in Eq. 4.10. The operator Q

is analogous to the ladder operator a that appears in the context of the harmonic oscillator.

For an harmonic oscillator, the operators a and a† obey the commutation rule [a, a†] = 1.

It can be shown by a straightforward calculation that the commutator of Q and Q† is given
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by [Q,Q†] = −2u. The difference in the two commutation relations is obvious. In case

of a harmonic oscillator, the commutator of the ladder operators is a constant, whereas

it is not so for the semi-Dirac problem. The Hamiltonian for the harmonic oscillator,

when expressed in terms of the ladder operators, is given as H = a†a + 1
2 ; whereas for the

semi-Dirac problem, the Hamiltonian squared as obtained in Eq. 4.10 can be written as

h2 = Q†Q. Apart from an additive constant 1
2 , they are formally similar. One important

difference is, in case of the harmonic oscillator the Hamiltonian itself is written in terms of

the ladder operators; whereas in case of semi-Dirac, it is the Hamiltonian squared which

is written in terms of the operators Q, and Q†. The eigen-equation for the Hamiltonian in

Eq. 4.10 is given by

Q†Qφn(u) = (− ∂2

∂u2
+

1
4
u4 + u)φn(u) = εnφn(u), (4.11)

and a similar equation replacing Q†Q on the left of Eq. 4.11 by QQ†, with the plus sign

before u on the right side of the same equation replaced by a minus sign.

4.1.1 Solving the Eigenvalue problem by WKB Method

The eigenvalue problem in Eq. 4.11 is similar to solving for a Schrodinger equation with

a linear plus a quartic potential. The eigenvalue problem in Eq. 4.11 can not be solved

exactly due to the presence of the quartic potential term 1
4u4. For some general results one

must resort to an approximate method. The ‘Wentzel Kramers Brillouin’ or WKB method

is such an approximate method, which allows one to compute the eigen-energies without

needing first to solve the Schrodinger’s equation. It is based on casting the wave-function

under certain approximations in such a way that the energy quantization comes out as

a requirement of uniqueness of the wave-function. Following is a brief description of the

WKB method.
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4.1.2 WKB Method

For simplicity and also due to the relevance to the problem at hand, in the following only

the one dimensional case is considered. A higher dimensional generalization, although not

required for our problem, is straight forward. The one dimensional Schrodinger equation

can be written as

d2ψ

dx2
= −p2

h̄2 ψ, (4.12)

where

p(x) =
√

2m(E − V (x)). (4.13)

x denotes the space variable; E, the eigenvalue and V , the potential. It is noted that p

in Eq. 4.13 reduces to the conventional free particle momentum when V (x) = 0. p is in

general a function of x. Writing ψ(x) = A(x)eiφ(x) for the wave-function ψ(x), and after

substituting that in Eq. 4.12, equating the real and the imaginary parts separately one

obtains the following coupled equations for the amplitude and the phase functions A(x)

and φ(x) respectively.

A′′

A
= (φ′)2 − p2(x)

h̄2 , (4.14)

(A2φ′)′ = 0. (4.15)

The solution to Eq. 4.15 is easy and is given by

A2φ′ = C, (4.16)

where C is a constant. Next it is assumed that A′′
A is a small quantity, which is a reasonable

assumption if A is slowly varying function of x. Then the left side of Eq. 4.14 is ≈ 0 and
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the following is obtained

φ′ = ±p

h̄
. (4.17)

Solving for φ,

φ = ±1
h̄

∫
p(x). (4.18)

Using Eq. 4.18 in Eq. 4.16, the following is obtained

A =
C√
p(x)

. (4.19)

Combining Eq. 4.19 and Eq. 4.18 the following expression is obtained for the wave-function

ψ(x) ≡ Aeiφ(x) ≈ C√
p(x)

e±
i
h̄

∫
p(x)dx. (4.20)

CLASSICAL REGION NON-CLASSICAL REGIONNON-CLASSICAL REGION

TURNING POINTS

P
O

T
E

N
T

IA
L

Fig. 4.1: Illustrating classical and nonclassical regions, as well as turning points

p(x) in Eq. 4.20 can be real or imaginary depending on whether x is in the classical
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region or not. By classical region one means the range of the space variable x, in which

the total energy of the particle E is greater than V (x). The range of x, in which E < V (x)

is called the nonclassical region. In the non-classical region, p(x) given by Eq. 4.13 is

imaginary. Hence in the nonclassical region Eq. 4.20 reduces to

ψ(x) ≈ C√
|p(x)|e

± 1
h̄

∫ |p(x)|dx. (4.21)

In Fig.4.1 the classical region, the non-classical region, and turning points (values of x

where the total energy is equal to the potential energy) are shown. In the following one of

the turning points is considered: the right turning point. Shifting the origin to there and

referring to Eqs. 4.20 and 4.21 one can write the wave-function for the classical (x < 0)

and the non-classical (x > 0) regions as follows

ψ(x) ≈ 1√
p(x)

[Be
i
h̄

∫ 0
x p(x′)dx′ + Ce−

i
h̄

∫ 0
x p(x′)dx′ ], x < 0 (4.22a)

≈ 1√
|p(x)|De−

1
h̄

∫ x
0 |p(x′)|dx′ , x > 0. (4.22b)

4.1.3 Patching Function

The wave-functions given by Eq. 4.22 has a serious problem: they blow up at the turning

points, where p(x) = 0. So it is suspected although the wave-functions given by Eq. 4.22

are good approximations away from the turning point and well into the classical and the

non-classical regions, a different patching function is needed for the region around the

turning point. In the following it is described how that patching function is obtained.

Referring to Fig.4.2, the potential function is Taylor-expanded about the turning point as

follows:

V (x) ≈ E + V ′(0)x, (4.23)
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Fig. 4.2: Zooming in on one of the turning points

where E is the total energy, and V ′(0) denotes the slope of the potential at x = 0. Inserting

Eq. 4.23 in Eq. 4.12, the following is obtained

d2ψpatch

dx2
= −β3xψpatch, (4.24)

where ψpatch is the patching function valid near the turning point and β is a constant

given by β ≡ [2m
h̄2 V ′(0)]

1
3 . Eq. 4.24 goes by the name ‘Airy’s equation’. [Absorbing the

constant β in the variable x, one could cast Eq. 4.24 in a form more recognizable as a

Airy’s equation, for example, d2ψ
dz2 = −zψ, where z is the new variable βx.] The linearly

independent solutions of Eq. 4.24 are given by the functions Ai(βx) and Bi(βx). The most

general solution of the Airy’s equation will involve both the functions. But the fact that

Bi(βx) blows up for large values of x does not qualify it as a physical solution for ψpatch:

after all, the patching function should match with the exponentially decaying expression

for the wave function in the nonclassical region given by Eq. 4.22b. Hence for the turning

point under question, the solution for the patching function will involve Ai(βx) only. In the
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Fig. 4.3: The Airy’s functions Ai(z) and Bi(z)

following only the classical region (x < 0) is considered, since that will help us obtain the

WKB quantization condition. The wave function assumes an uninteresting exponentially

decaying form in the non-classical region (x > 0). In the following it is verified that the

asymptotic expression for the Airy function Ai(βx) in the classical region matches with

Eq. 4.22b. The reason for considering an asymptotic expression for the Airy function in

the classical region is that it is a solution for the wave function around the right turning

point which is rather far away from the core of the classical region. Inserting Eq. 4.23 in

Eq. 4.13, the following is obtained

p(x) ≈ h̄β
3
2
√−x. (4.25)
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Using Eq. 4.25 for p(x) in Eq. 4.22a, the following is obtained

ψ(x) ≈ 1√
h̄α

3
4 (−x)

1
4

[Bei 2
3
h̄(−αx)

3
2 + Ce−i 2

3
h̄(−αx)

3
2 ] (4.26)

The asymptotic expression for ψpatch is:

ψpatch Ai(βx) ≈ 1
√

π(−βx)
1
4

sin[
2
3
(−βx)

3
2 +

π

4
], x ¿ 0. (4.27)

Comparing Eq. 4.26 and Eq. 4.27 it is observed that they agree as expected with the

choices of B =
√

h̄α
π

1
2ie

i π
4 and C = −

√
h̄α
π

1
2ie

−i π
4 . Hence Eq. 4.27 gives the wave function

for the classical region. In Eq. 4.27 the term 2
3(−βx)

3
2 appearing in the argument of

the sine function is nothing but the integral
∫ 0
x p(x′)dx′, where p(x) is given by Eq. 4.25.

As for the upper limit of integration, one can replace 0 by a more generic symbol x2,

corresponding to the right turning point as shown in Fig.4.1. Finally dropping the pre

factors, in Eq. 4.27 only the sine function is written as

sin[
1
h̄

∫ x2

x
p(x′)dx′ +

π

4
] (4.28)

[With the goal of obtaining the WKB quantization condition it will suffice to focuss on the

sine function only.] Eq. 4.28 does not depend on a specific choice of origin. In an exactly

similar way expanding the potential V (x) about the left turning point as shown in Fig.4.1,

a very similar expression as Eq. 4.28 will be arrived at. The only difference will be in the

limits of integration in the integral appearing inside the argument of the sine function:

instead of having
∫ x2

x p(x′)dx′ one will have
∫ x
x1

p(x′)dx′, where x1 is the co-ordinate of the

left turning point. Hence for the left turning point, the expression that would correspond

to to Eq. 4.28 is given as follows

sin[
1
h̄

∫ x

x1

p(x′)dx′ +
π

4
] (4.29)
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The expressions given by Eq. 4.28 and Eq. 4.29 should correspond to the same wave

function: the wave function being unique(up to a sign)should not depend on how it is

arrived at. As a wave function is unique up to a sign, the argument of the sine function in

Eq. 4.29 can be multiplied with an overall negative sign. [Any special assumption is not

being made here. It’s just that without the negative sign one doesn’t get the quantization

condition in its desired form.] With that little adjustment, Eq. 4.29 is transformed into

sin[−1
h̄

∫ x

x1

p(x′)dx′ − π

4
] (4.30)

Considering the equivalence of Eq. 4.28 and Eq. 4.30, and using the fact that two sine

functions differ at most by a sign if their arguments differ by an additive constant nπ(where

n is an integer), the following WKB energy quantization condition is obtained

∫ x2

x1

p(x)dx = (n +
1
2
)πh̄, (4.31)

n being an integer. This finishes the description of the WKB method. Next it is described

how the method is applied in the context of the semi-Dirac problem.

4.1.4 Results obtained with the help of WKB method

With an aim to solving the eigenvalue problem in Eq. 4.11 it is noted that every eigenfunc-

tion of h given by Eq. 4.7 is also an eigenfunction of h2, and that although the potential

given by Fig.4.4 is negative in the interval (0,41/3), the eigenvalues ε2
n must be non-negative.

In the following it is described how the WKB method is applied to compute the eigen-

values. Initially neglecting the linear term in the potential, the WKB condition given by

Eq. 4.31 becomes

∫ √
2ε

1
4
n

−√2ε
1
4
n

√
En − 1

4
u4du = (n +

1
2
)π, (4.32)

29



−3 −2 −1 0 1 2 3

0

5

10

15

20

ε
0
=0.59

ε
1
=1.53

ε
2
=2.15

Coordinate u

P
ot

en
tia

l

Fig. 4.4: Potential energy function 1
4u4 + u for the one-dimensional Schrodinger equation and the

resulting quantized energy levels for h2 obtained by the WKB method. The lowest three
energy eigenvalues εn’s are given explicitly.

which can be solved in closed form to give the eigenvalues for the quartic potential as

ε2
n = [3

√
π

2
Γ(3

4)
Γ(1

4)
]4/3(n +

1
2
)

4
3 = 1.3765(n +

1
2
)

4
3 . (4.33)

The linear perturbation corrects the eigenvalues only to second order, which is a small

correction as verified by direct numerical solution, which gets successively smaller for

higher eigenvalues. [This has been verified by numerical solution of the eigenvalue problem

in Eq. 4.11.] Therefore the semiDirac system has eigenvalues in a magnetic field which

scale as B2/3 (from Eq. 4.6) and increase as (n+ 1
2)2/3(from Eq. 4.33) as n gets large. Both
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aspects lie between the behaviors for conventional Landau levels (linear in B, proportional

the n + 1
2) and the Dirac point behavior (proportional to

√
B n), as might have been

anticipated. Some low-lying eigenvalues of h2 are shown in Fig.4.4 against the potential

well. It is noted that there is no zero-energy solution as in the graphene problem.

4.2 Faraday Rotation in the context of the semi-Dirac system

4.2.1 The semiclassical equation of motion

The semiclassical equation of motion of an electron in a magnetic field ~B is given by

h̄
d~k

dt
= −e

c
~vk × ~B. (4.34)

Using Eq. (2.6) for ~vk in Eq. (4.34), one obtains the following expressions

dKx

dt
= −ω0Ky, (4.35a)

dKy

dt
= 2ω0K

3
x, (4.35b)

where Kx and Ky are the dimensionless variables associated with momentum introduced

before, and ω0 is given by

ω0 =
eBv2

cε
, (4.36)

where B is the magnetic field, and ε, the Fermi energy. Combining Eqs. Eq. (4.35a) and

Eq. (4.35b), the following differential equation is obtained

d2Kx

dt2
= −2ω2

0K
3
x, (4.37)

In order to solve this second order differential equation, we multiply both sides of the

equation by K̇x (K̇x denotes the derivative of Kx w.r.t time). Both the right and the

left sides of the equation can then be written as a total derivative of time, which can be
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integrated to give

K̇x
2

= −ω2
0K

4
x + C, (4.38)

where the constant C can be determined from the condition that K̇x = 0 when Kx =

(Kx)max. This follows from the fact that Ky is equal to 0 when K̇x = 0, as can be seen

from Eq. (4.35a); and from the semiDirac dispersion given by Eq. 2.2, Ky = 0 corresponds

to Kx = (Kx)max =
√

ε
ε0

. Hence Eq. 4.38 becomes

K̇x = ω0

√
(Kx)4max −K4

x, (4.39)

4.2.2 The cyclotron frequency, solutions for Kx and Ky as functions of time, and the

cyclotron orbit

Integrating Eq. 4.39, one obtains Kx as a function of time. Once Kx is known, Ky can

be obtained from Eq. 4.35b. Before showing the detailed results for that, it is observed

that the time period can be obtained simply by integrating Eq. 4.39 from −(Kx)max to

(Kx)max for the variable Kx. The time period (T ) thus obtained is

ω0T =
4I1

(Kx)max
= 4I1

√
ε/ε0, (4.40)

where I1 is given by Eq. 2.5. From Eq. 4.40, the fundamental cyclotron frequency ωc ≡ 2π
T

is obtained as

ωc/ω0 =
π

2
I−1
1 (ε/ε0)−

1
2 . (4.41)

The cyclotron frequencies for the parabolic and the linear dispersion cases are given by

(µBB
h̄ = eB

mc) and eBv2

cε respectively(µB is the Bohr magneton). Comparing with Eq. 4.41 it

is observed that the cyclotron frequencies for all the three cases(the parabolic, linear, and

semi-Dirac) depend linearly on the magnetic field. The cyclotron frequency is independent
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of the Fermi energy for parabolic dispersion, whereas it varies as ε−
1
2 for the semiDirac

dispersion and as ε−1 for the linear Dirac dispersion. One important aspect of the semi-

Dirac dispersion is that the semi-Dirac dispersion being anisotropic in the momentum

space can have harmonics of the fundamental cyclotron frequency given by Eq. 4.41. This

feature is absent in the Dirac or the two dimensional parabolic dispersion where the energy

momentum dispersion is isotropic giving rise to only one value for the cyclotron frequency.

Next, In order to find the solution to Eq. 4.39 in closed form, a new variable K ′
x is

introduced defined as K ′
x = Kx

(Kx)max
. Eq. 4.39 is rewritten in terms of the new variable as

follows

K̇ ′
x = ω′0

√
1−K ′

x
4, (4.42)

where ω′0 is given by

ω′0 = (Kx)maxω0 =
√

ε

ε0
ω0 (4.43)

The solution to Eq. 4.42 can be given in closed form in terms of elliptic integrals. To that

end Eq. 4.42 is written in the integral form as follows

∫
dK ′

x√
1−K ′

x
4

= ω′0

∫
t (4.44)

The solution of the above equation is given by

1√
2
F (arcsin

√
2K ′

x√
1 + K ′

x
4
,

1√
2
) = ω′0t, (4.45)

where the function F is the elliptic integral of the first kind. It has two arguments and is

defined as follows

F (ϕ, k) =
∫ ϕ

0

dw√
1− k2 sin2 w

(4.46)
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The implicit expression in Eq. 4.45 is solved for the variable K ′
x (there is command in

Matlab to do that). K ′
x and K ′

y are plotted w.r.t the dimensionless time variable t′ ≡ ω′0t in

Fig.4.5. K ′
x and K ′

y have an inverse relationship as far as evolution with time is concerned:
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Fig. 4.5: K ′
x and K ′

y versus the dimensionless time variable t′

as one of them increases, the other one decreases. Their rates of change w.r.t time are also

not the same. As can be seen from Fig.4.5, near t′ = 0, K ′
x changes much more rapidly

than K ′
y, which stays approximately flat for a while. This is reversed near the end where

K ′
x is close to one and K ′

y is close to zero. The differential equation for the cyclotron orbit

is obtained by dividing Eq. 4.35b by Eq. 4.35a. Solving for that, we obtain the semi-Dirac

constant energy contour as an expression for the cyclotron orbit, which is expected, since

the energy of an electron does not change when it moves under the influence of magnetic
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field.

4.2.3 Faraday Rotation

Angle of rotation of the plane 

Of polarization

Fig. 4.6: Faraday rotation [36]

The Faraday rotation Fig.4.6 is the phenomenon of rotation of polarization of light after

passing a medium in the presence of the magnetic field. This was first discovered by Michael

Faraday, which helped to establish the relationship between light and electromagnetism.

The Faraday rotation angle is given by the expression [36]

θ(ω, B) = Z0fs(ω)Re[σxy(ω, B)], (4.47)

where Z0 is the impedance of the vacuum, fs is the spectrally featureless function specific

to the substrate, and σxy is the dynamic Hall conductivity. According to the Drude formula

the dynamic Hall conductivity is given by [36]

σxy =
−2D

π

ωc

ω2
c − (ω + i

τ )2
, (4.48)
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where D is the Drude weight, given by D = π
6 e2D(ε)〈v2〉. Taking the real part of Eq. 4.48

and using it in Eq. 4.47 we obtain

θ(ω,B) =
−2Z0fs(ω)Dωc

π
I(ω), (4.49)

where I(ω) is given by

I(ω) =
ω2

c − ω2 + 1
τ2

(ω2
c − ω2 + 1

τ2 )2 + 4ω2

τ2

(4.50)

Extremizing I(ω) and inserting the resulting expression for I(ω) in Eq. 4.49 we obtain the

following expression for the maximum value of the Faraday rotation angle θ

θ(ω, B) =
−Z0fs(ω)Dωcτ

2

2π((ω2
c τ

2 + 1)
1
2 − 2)

, (4.51)

The Drude weight D ∼ ε for Dirac dispersion (since D(ε) ∼ ε, and 〈v2〉 is a constant).

The Dirac cyclotron frequency ωc ∼ ε−1. Hence the product Dωc that appears in the nu-

merator of Eq. 4.51 is independent of the doping level for Dirac dispersion. For semi-Dirac

dispersion, D ∼ ε
1
2 , which follows from the fact that the product D(ε)〈v2〉 ∼ D(ε)〈v2

y〉,
where vy is the speed in the relativistic direction, and that D(ε)〈v2

y〉 ∼ ε
1
2 . The last step

follows by combining Eq. 2.4 and Eq. 2.10b. For the same dispersion ωc ∼ ε−
1
2 (from

Eq. 4.41). Hence, like Dirac dispersion, Dωc for the semi-Dirac dispersion is independent

of the doping energy. For two dimensional parabolic dispersion, ωc is independent of the

doping energy, but D ∼ ε. Hence Dωc depends on the doping energy. This is a significant

difference when compared to the Dirac and the semi-Dirac dispersion.

For Dirac and semi-Dirac systems the dependence of the Faraday angle on the doping

level arises from the term ωcτ in the denominator of Eq. 4.51, whereas the numerator is

independent of doping. For those dispersions one can fine tune the Fermi energy to obtain

a large value of the Faraday angle by bringing the term ωcτ close to three, so that the

term (ω2
c τ

2 +1)
1
2 − 2 appearing in denominator goes to zero causing a significant value for
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the Faraday angle.
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5. FEATURES OF THE SEMI-DIRAC DISPERSION

5.1 Introduction

In this section a study of the low energy behavior of a semi-Dirac system is presented. That

includes Hall coefficient, magnetic susceptibility and heat capacity. Results for plasma

frequency versus doping level are also provided. Some new behavior along with somewhat

conventional results are found. In the next chapter some results for Klein tunneling of semi-

Dirac particles are given. While for several properties semi-Dirac behavior is intermediate

and thus unique, it may become quite different for certain properties.

5.2 Hall Coefficient

The Hall effect is the building up of voltage transverse to the direction of the flow of the

current when magnetic field is applied in a bar of a material. Classically the Hall effect can

be thought of as a result of the deflecting Lorentz force that an electron encounters in the

presence of the magnetic field. As an indicator of the intensity of this effect one defines

a quantity called the Hall coefficient (RH), which is the ratio of the transverse electric

field and the product of the current and the magnetic field. For a given current the Hall

coefficient gives a measure of how strong the transverse electric field is, or in other words

how strongly an electron is deflected. Without considering the details of the band structure

the Hall coefficient turns out to be a rather simple expression given as RH = −1
nec , where

n is the carrier concentration. With the help of Bloch Boltzman transport theory, in the

following it is shown how to obtain an energy-momentum dispersion dependent expression

for the Hall coefficient [37]. It is also shown even with as exotic a dispersion as semi-Dirac

dispersion one obtains RH = −1
nec ! Following an argument based on mathematical and



geometrical features of the Fermi surface, it is proven that the above result holds for a

class of energy momentum dispersion relation.

5.2.1 Bloch-Boltzman Transport theory

In transport theory the collective motions of electrons is considered. Electrons move due

to the application of the electric and the magnetic field or the presence of a tempera-

ture gradient. The existence of a temperature gradient is ignored in computing the Hall

coefficient. In Boltzman transport theory an important quantity is the local distribution

function F (r,k) of electrons. F (r,k)drdk gives the number of electrons in the phase-space

volume drdk. In steady state F (r,k) is given by

F (r,k) = f(ε(k− h̄−1Fextτ)), (5.1)

where f(ε) and Fext are the Fermi-Dirac distribution and external force respectively. τ is

relaxation time. The Fermi-Dirac distribution f(ε) is given by

f(ε) = 1 + e
ε−µ
kBT

−1

, (5.2)

where the standard notations for energy, chemical potential and Boltzman’s constant have

been used. The external force Fext is the Lorentz force given by

Fext = −eE− ev(k + eE)×B. (5.3)

The local distribution in Eq. 5.1 can be physically interpreted being same as the Fermi-

Dirac distribution at an earlier time t−τ , when the momentum of the electron was k−Fextτ .

[During the time interval τ , the the momentum changes by Fextτ , which is a consequence

of the semi-classical equation of motion dp
dt = dh̄k

dt = F.] It is assumed that there has been

no collision in the time interval τ , and that the electrons maintain a quasi-equilibrium
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distribution after the collision. The current can be written as

jα = − e

Ω
Σkvα(k)F (r,k). (5.4)

The same current assumes the following form when expressed as a function of the electric

and the magnetic field [37]

jα = σαβEβ + σαβγEβBγ , (5.5)

+ + + + +  +  + + + + + + + +

- - - - - - - - - - -

x

y

z

x
j

B

y
E

Fig. 5.1: The arrangement for the Hall effect. The applied magnetic field is in the z direction and
the current flows along x.

where σαβ and σαβγ are tensors. A two-dimensional system described by the co-

ordinates x and y is considered. The current flows initially along the x-direction as shown

in Fig.5.1. A magnetic field B is applied along the z-direction. Setting jy , the current

along y, in Eq. 5.5 to be zero (at equilibrium), the Hall coefficient RH is obtained as

RH =
σxyz

σxxσyy
. (5.6)
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After Taylor expanding Eq. 5.1 w.r.t the parameter τ , the resulting expression is inserted

in Eq. 5.4, and the final expression is compared to Eq. 5.5. One obtains

σxyz =
1

2π2

∫
dk[vy(vy

∂

∂kx
− vx

∂

∂ky
)](− ∂f

∂εk
) (5.7a)

σxx =
1

2π2

∫
dkv2

x(− ∂f

∂εk
) (5.7b)

σyy =
1

2π2

∫
dkv2

y(−
∂f

∂εk
) (5.7c)

The factor (− ∂f
∂εk

) in the above equations arises as a result of Taylor expansion and

in the low temperature limit is approximately equal to −δ(ε − εk). Using the identity
∫

dkδ(ε − εk) =
∫

dkl|v−1
k |, where dkl is the length along the Fermi-contour of the semi-

Dirac dispersion, we obtain

σxyz =
1

2π2

∫
dkl|v−1

k |[vy(vy
∂

∂kx
− vx

∂

∂ky
)] (5.8a)

σxx =
1

2π2

∫
dkl|v−1

k |v2
x (5.8b)

σyy =
1

2π2

∫
dkl|v−1

k |v2
y . (5.8c)

It is shown in the following that Eq. 5.8a is the area Av spanned by the velocity vector over

the Fermi surface[38]. With the co-ordinates depicted in Fig.5.2, the following identity is

obtained

v−1
k (vy

∂

∂kx
− vx

∂

∂ky
)vx = v−1

k [(v× ẑ).∇]vx (5.9)

= [(v̂ × ẑ).∇]vx

= [t̂.∇]vx

= dvx

To derive the last line of Eq. 5.9, the fact that t̂.∇ is the change ‘d’ along the Fermi contour
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xydvv∫=Area enclosed by the velocity vector

Fig. 5.2: The areas enclosed by the Fermi-contour as well as the closed curve described by the
velocity vector defined on the Fermi contour

is used. Using Eq. 5.9 in Eq. 5.8a, the following expression for σxyz is obtained.

σxyz =
∫

vydvx. (5.10)

Eq. 5.10 is the area enclosed by the curve generated by the velocity vector at the Fermi

contour, as one traverses along the Fermi-contour. This is a nice geometrical interpretation

of σxyz. In the following the expressions for σxx and σyy are also simplified. The velocity

vk ∼ ∇kεk at the Fermi contour is perpendicular to the line element dkl. But ∇kε ·dk = 0

implies

dky

dkx
=
−vx

vy
. (5.11)

Using Eq. 5.11 in the expression for |dkl| given as |dkl| = (1 + (dky

dkx
)2)

1
2 , the following is
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obtained

|dkl| = |vk|
vy

dkx, (5.12)

where the fact that |vk| =
√

v2
x + v2

y is used. Using Eq. 5.11 and Eq. 5.12 in Eq. 5.8b and

in Eq. 5.8c, one obtains

σxx =
1

2π2

∫
dkyvx (5.13a)

σyy =
1

2π2

∫
dkxvy (5.13b)

Using Eq. 5.10, Eq. 5.13 in Eq. 5.6, the following is obtained

RH =
1

2π2 vydvx

( 1
2π2

∫
dkyvx)( 1

2π2

∫
dkxvy)

. (5.14)

1
2π2

∫
dkyvx in the denominator of Eq. 5.14 can be recast as an integration over the velocity

variable instead of over the momentum variable by executing an integration by parts as

follows

1
2π2

∫
dkyvx =

1
2π2

[vxky|fi −
∫ f

i
kydvx], (5.15)

where i and f are as indicated in Fig.5.3. [The semi-Dirac dispersion is symmetric both

in the x and the y directions. Hence the limits of the integrals appearing in Eq. 5.15 (and

also in Eq. 5.14) can be restricted to the first quadrant.]

Referring to Fig.5.3, ky at i and vx at f are zero. Hence Eq. 5.15 assumes the following

form.

− 1
2π2

∫
dkyvx =

1
2π2

∫ f

i
kydvx (5.16)
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Fig. 5.3: One quarter of the semi-Dirac contour. The velocities at i and f are directed along kx

and ky axis respectively.

Inserting Eq. 5.16 in Eq. 5.14 the following is obtained

RH =
− 1

2π2 vydvx

( 1
2π2

∫
kydvx)( 1

2π2

∫
vydkx)

. (5.17)

Next, it is noted that the carrier density n is proportional to the area swept by the vector

k as k moves along the Fermi surface, which is same as the area enclosed by the Fermi

surface as shown in Fig.5.2. Hence n is given by

n =
1

2π2

∫
kydkx (5.18)

Hence the quantity RHn is given by:

RHn = −
∫

kydkx

∫
vydvx∫

kydvx

∫
vydkx

. (5.19)

Eq. 5.19 is the key result of this section. It will help in proving that RHn = −1 for the

semi-Dirac dispersion. It will also help establishing a general relationship between the

energy-momentum dispersion and the quantity RHn.
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5.2.2 A theorem relating the energy-momentum dispersion and RHn being −1

Under the assumptions that the Fermi surface is not too complicated and that there exists a

pair of orthogonal axes in the k-space such that they are normal to the Fermi surface at the

points they intersect the Fermi surface, if any component of the velocity vector is propor-

tional to the corresponding component of the k vector throughout the Fermi surface, RHn

will be equal to −1. It is explained in the following how the theorem follows from Eq. 5.19.

From Eq. 5.19 it is observed if the y component of the velocity vector is proportional to

that of the k vector, RHn will be equal to −1. There is nothing special about the kx or

the ky axis. If any component of the velocity vector is proportional to the corresponding

component of the k vector, RHn will be equal to −1. For graphene, the energy momentum

dispersion ∼
√

k2
x + k2

y, which results in vy ∼ ky(k2
x + k2

y)
−1/2 = kyε

−1
Fermi, where εFermi

is the energy at the Fermi contour. Since vy ∝ ky for the Dirac dispersion, RHn is equal

to −1 for that case. For a simpler dispersion like the parabolic dispersion, both the com-

ponents of the velocity vector are proportional to those of the k vector. Hence RHn is

also −1 for that. For the semiDirac dispersion vy evaluated on the Fermi surface turns

out to be proportional to ky(Eq. 2.7). [On the Fermi contour
√

K4
X + K2

Y is a constant.]

Hence RHn = −1. This is a rather surprising result given the complexity of the semi-Dirac

dispersion. Eq. 5.19 was arrived at by assuming that the Fermi contour is normal to the kx

and ky axes as shown in Fig.5.3. Hence if it turns out, for a particular choice of mutually

orthogonal axes the above-mentioned condition is not satisfied, that does not immediately

rule out RHn being −1. One should try to find a pair of orthogonal axes which are normal

to the Fermi-contour. In case either that does not exist or the curvature of the F.S is

not as simple as shown in Fig.5.3, the validity of the theorem may be compromised. In

order to emphasize the point that the result is not true in general an hypothetical energy

momentum dispersion, say, εk = ak4
x + bk4

y is invoked. For this dispersion vy ∝ k3
y. Hence

the requirement that vy should be proportional to ky is violated. It can be shown by direct

calculation that RHn = −.8488 6= 1 for this problem. Hence it has been shown that the

Hall coefficient times the carrier density is a topologically invariant quantity for a certain
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class of band structures, whose F.S’s are not too complicated.

5.3 Heat Capacity

It is shown that the heat capacity for the non-interacting two-dimensional semi-Dirac

electron gas without any external potential is equal to that of the three-dimensional non-

interacting electron gas with the parabolic energy-momentum dispersion at both the low

and the high temperature ends. Relative to the natural energy scale ε0 introduced at the

beginning, the low and the high temperatures can be considered. The low temperature

heat capacity per particle for the semiDirac dispersion is :

cv =
2I1

3
mk2

B

√
ε

ε0
, (5.20)

which is calculated using Sommerfeld expansion [44](I1 is given in Eq. 2.5). It is observed

that the heat capacity in Eq. 5.20 is proportional to
√

ε. A similar type of dependence with

energy is observed for the three dimensional electron gas. The major difference between the

heat capacity for a three dimensional electron gas and two dimensional semi-Dirac electron

gas is in the prefactors. This difference disappears quite nicely in the high temperature

end as is shown in the following. At high temperature, the heat capacity for the three

dimensional electron gas is given by 3
2kB. In order to emphasize a technique that will be

used for the semi-Dirac problem a derivation of the above result for the three-D electron

gas is first outlined in the following. The Hamiltonian for the parabolic three dimensional

Hamiltonian is given by Hparabolic = 1
2m(p2

x + p2
y + p2

z). It can be shown that ∂H
∂pi

= pi
m

[where i = x, y, z]. Hence Hparabolic can be written as

Hparabolic =
1
2
(px

∂Hparabolic

∂px
+ py

∂Hparabolic

∂py
+ pz

∂Hparabolic

∂pz
). (5.21)
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Next by equipartition theory, the ensemble average of each of px
∂H
∂px

, py
∂H
∂py

, andpz
∂H
∂pz

is

kBT [43]. Hence taking the ensemble average of the Hamiltonian in Eq. 5.21, one obtains

< Hparabolic >=
3
2
kBT. (5.22)

Taking the derivative of < Hparabolic > w.r.t T one obtains the expression for the heat

capacity as 3
2kB. The classical semi-Dirac Hamiltonian is given by

HsD =

√
p4

x

4m2
+ v2p2

y (5.23)

It is a two dimensional system, hence pz is absent in Eq. 5.23. Taking the derivative of

HsD w.r.t px and py the following identity is established.

HsD =
1
2
px

∂HsD

∂px
+ py

∂HsD

∂py
(5.24)

Next the equipartition theorem is used to obtain an expression for the ensemble average

of HsD. One obtains

< HsD >=
1
2
kBT + kBT =

3
2
kBT (5.25)

Taking the derivative of the above expression w.r.t T one obtains cv = 3
2kB for the heat

capacity for the semi-Dirac dispersion. It is noted that it is exactly same as that of a three

dimensional non-interacting gas with parabolic dispersion. This result has also been veri-

fied by computing the heat capacity for the semi-Dirac dispersion directly starting from the

Boltzmann distribution. This is rather an interesting result. In the low temperature limit

the semi-Dirac heat capacity has the same energy dependence as the three dimensional

parabolic system. In the high temperature end of the spectrum the heat capacities are

identical. A two dimensional semi-Dirac system effectively behaves as a three dimensional

system. The appearance of this third degree of freedom can have potential technological

applications. For example, larger the heat capacity of the material, the better is its ability
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to maintain the desired temperature. So a semi-Dirac system can function more efficiently

as compared to other two dimensional systems so far as maintaining a fixed temperature

is concerned.

5.4 Plasmon frequency

5.4.1 Random Phase Approximation and Lindhard Dielectric function

The plasmon oscillation can be thought of as the oscillation of negatively charged electrons

in the background of positively charged ions. The plasmon oscillation frequency can be

determined with the help of classical Maxwell’s equations modeling electrons sloshing back

and forth in a positively charged background. So plasmon excitation can be thought of as

a result of the variation of the charge density. In the following it is outlined how one can

obtain the Linhard susceptibility expression starting from density-density Green’s function

and also obtain an expression for the dielectric constant making an approximation known

as the ‘Random Phase Approximation’. The density-density Green’s function is given by

[69]

X(q, t) = i < GS|T ρ̂q(t)ρ̂†q(0)|GS >, (5.26)

where |GS > is the ground state wave function. T indicates the time ordering, and q

stands for the momentum vector. The density operator ρ̂q(t) can be expressed as a sum

of the Fourier components as follows

ρ̂q(t) =
∑

k

c†k(t)c†k+q(t), (5.27)

where c† and c are the creation and the destruction operators for the electron. The physical

interpretation of the density density Green’s function is it creates a particle-hole pair and

let it propagate in time. Spin is ignored in the calculation. Using Eq. 5.27 in Eq. 5.26 one
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obtains

X(q, t) = i
∑

k

< GS|c†k(t)ck+q(t)c†
k′+q

ck′ |GS > . (5.28)

Approximating the |GS > by a non-interacting one, as well as applying Wick’s theorem,

Eq. 5.28 in the zeroth order approximation can be written as

X0(q, t) = 2i
∑

k

G0(k+q, t)G0(k,−t), (5.29)

where G0(k, t) is a non-interacting Green’s function.

qk
rr

+

k
r

=− ),(
0

tqiX
r 0t

Fig. 5.4: Diagram showing the density density Green’s function iX0 given by Eq. 5.29.

Eq. 5.29 can diagrammatically be represented as in Fig.5.4. The solid lines correspond

to free single particle Green’s functions. k and q are the internal and the external momenta

respectively. A hole is a particle moving backward in time. Because the two arrows in the

diagram are oppositely directed, one of them is a particle and the other is hole. Hence the

bubble is also called as a particle-hole or polarization loop. Taking the Fourier transform
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of Eq. 5.29 one obtains

X0(q, ω) =
∫ ∞

−∞
dte−iωtX0(q, t) (5.30)

=
∑

k

∫
dε

2π
G0(k+q, ε + ω)G0(k, ε),

where G0(k, ε) is given by

G0(k, ε) =
1

ε− εk + iδsign(εk)
(5.31)

εk in Eq. 5.31 is the energy corresponding to the unperturbed Hamiltonian. Using the

expression for the Green’s function given by Eq. 5.31 in Eq. 5.30, one obtains

X0(q, ω) = −2Σk

∫
dε

2πi

1
ε + ω − εk+q + iδsign(εk+q)

.
1

ε− εk + iδsign(εk)
. (5.32)

In order to evaluate the integral given by Eq. 5.32 the observation is made when εk+q and

εk are both positive, the poles of both the Green’s functions appearing in Eq. 5.32 have

poles in the lower half of the complex ε plane. Hence the contour of integration can be

chosen in the upper half of the complex ε plane, resulting in the integral being zero. A

similar result holds for the case when εk+q and εk are both negative.(The contour then

needs to be chosen in the lower half of the complex ε plane, both the poles being in the

upper half.) A nontrivial result follows when εk+q and εk are of opposite sign. In that

case the contour integrations in Eq. 5.32 give the following result

X0(q, ω) = −2Σk[
θ(εk+q)θ(−εk)

ε + ω − εk+q + iδ
− θ(−εk+q)θ(εk)

ω − εk+q + εk − iδ
]. (5.33)

It is noticed either the first or the second term of Eq. 5.33 is nonzero. For finite temperature

scenario the theta function is be replaced by the Fermi-Dirac distribution function f .

θ(−εk) is replaced by f(εk), the reason being θ(−εk) is non-zero when εk < 0.(The

chemical potential has been chosen to be the origin of the energy.) θ(εk) is replaced
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by 1 − f(εk) for obvious reason. After some algebraic manipulation The real part of X0,

also called Lindhard susceptibility function, is given by

χ0(q, ω) ≡ ReX0(q, ω) =
∫

d2k

(2π)2
f(εk)− f(εk+q)
h̄ω + εk − εk+q

. (5.34)

Fig. 5.5: First order diagrams for X

0
χ

=RPAχ

0
χ

qU−
0

χ

Fig. 5.6: RPA diagram for χ

The stage is set to discuss the Random Phase Approximation (RPA) technique. χ0
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Eq. 5.34 gives the zeroth order approximation for the susceptibility χ. In the following it is

shown how to obtain a better approximation of χ through RPA. The first order diagrams

as shown in Fig.5.5 are considered. Not all the diagrams contribute equally for small q

and ω. In the first diagram the variable q is a free variable. Each wiggly line corresponds

to the potential Uq, which goes as q−1 or q−2 depending on whether the system is a three

or a two dimensional one. So, in the first diagram there is a divergence coming from q

appearing in Uq. As for the other diagrams, the singularities arising from the potential

Uq gets integrated out. Hence the for small q, it is the first diagram which contributes

most among all the first order diagrams. In the RPA approximation all such diagrams are

collected ignoring others as shown in Fig.5.6. Hence χRPA is given as

χRPA = χ0(q, ω) + χ0(q, ω)[−Uqχ0(q, ω)] + χ0(q, ω)[−Uqχ0(q, ω)]2 + .... (5.35)

=
χ0(q, ω)

1 + Uqχ0(q, ω)

The pole of χRPA gives the Plasma excitation frequency. To build an intuitive under-

standing of that, the expression for the effective screened potential is considered in the

following. Variation of the charge density at one point creates an electric field at another

point in space, where the charge density gets influenced thereby. The effective screened

interaction energy due to the charge density fluctuation can be written as

URPA(q, ω) = Uq + Uq[−χ0(q, ω)Uq] + Uq[−χ0(q, ω)Uq]2 + .... (5.36)

=
Uq

1 + Uqχ0(q, ω)

It is noted that the effective potential in the RPA approximation gets screened by the

factor 1 + Uqχ0(q, ω). A dielectric constant is defined to be a measure of the screening.

Hence the RPA expression for the dielectric constant is given by

ε(q, ω) = 1 + Uqχ0(q, ω). (5.37)
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Plasma oscillation takes place in the absence of any external potential. If Uq = 0, the

denominator of URPA in Eq. 5.36, i,e ε(q, ω) is also zero in order to keep URPA finite.

Hence the plasmon frequency for the semiDirac system can be computed by setting ε(q, ω)

to zero.

5.4.2 The Plasma Frequency for the Semi-Dirac Dispersion

In this section an expression for the Plasma frequency for the semi-Dirac dispersion is

obtained. Expanding εk+q in Eq. 5.34 for small q (only this limit is considered), the

numerator in Eq. 5.34 assumes the following low temperature expression

f(εk)− f(εk+q) = ~vk · ~qδ(εk − ε). (5.38)

Expanding the denominator as well, Eq. 5.34 becomes

χ0(q, ω) =
∫

d2k

(2π)2
~vk · ~q( 1

h̄ω
+

~vk · ~q
(h̄ω)2

)δ(εk − ε). (5.39)

The Coulomb potential v(q) for a two dimensional system is given by

v(q) =
2πe2

κq
, (5.40)

where q =
√

q2
x + q2

y , and κ is the background dielectric constant of the medium. Using

Eq. 5.39 and Eq. 5.40 in Eq. 5.37, and setting Eq. 5.37 to zero, the plasmon frequency for

the semi-Dirac energy dispersion is obtained as

(h̄ωp)
2 =

8gI3

π

e2qε0

κ
F (θ), (5.41)

where F (θ) is given by

F (θ) = ξ
3
2 (cos2 θ +

1
4
ξ−1 I2

I3
sin2 θ), (5.42)

53



and I2, I3 are given by Eq. 2.11a and in Eq. 2.11b respectively. ε0 is the energy scale defined

earlier and the polar coordinates q, θ have been introduced. θ denotes the angle that the

plasmon wave-vector makes with the non-relativistic axis of the semi-Dirac dispersion. It

is recalled that the dimensionless Fermi energy variable is defined as ξ ≡ ε
ε0

. ωp ∝ √
q is

the characteristic of a two-dimensional system.
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Fig. 5.7: Angular dependence of the function F

The function F (θ) is plotted against θ in Fig. 5.7. Using Eq. 2.4 for the semiDirac

density of states and Eq. 2.10a and Eq. 2.10b for the average Fermi surface velocities

squared, Eq. 5.41 takes the following form

(h̄ωp)
2 = gπ

e2qh̄D(ε)
κ

(〈v2
x〉 cos2 θ + 〈v2

y〉 sin2 θ), (5.43)

As was mentioned at the end of section I, the average velocity in the relativistic direction
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(y) is significantly higher than that in the non-relativistic direction (x). From Eq. 5.43 it is

seen that the plasmon frequency is maximum when θ = π
2 , i,e, when the wave vector oscil-

lates along the relativistic direction. For the plasmon oscillation along the non-relativistic

direction, the oscillation frequency is much smaller in magnitude as compared to the pre-

vious case. There exists a high anisotropy between the relativistic and the non-relativistic

directions in this respect. This bears the signature of the semi-Dirac dispersion and is in

sharp contrast to the two dimensional parabolic and the Dirac dispersions, for which the

Plasmon frequencies are isotropic.

5.5 Magnetic susceptibility

In this section the magnetic susceptibilities for the semi-Dirac dispersion are considered.

The Pauli paramagnetic susceptibility is given by

χpara = µ2
BD(ε), (5.44)

where D(ε) is the density of states. Using Eq. 2.4 for the semi-Dirac density of states,

Eq. 5.44 reduces to

χpara =
2µ2

Bm

π2h̄2

√
ξ, (5.45)

where ξ ≡ ε
ε0

is the dimensionless variable as mentioned before. For a non-interacting

Fermi liquid the orbital susceptibility is given by[40].

χorb = − m2µ2
B

12π3h̄4

∫
d2k[

∂2εk

∂k2
x

∂2εk

∂k2
y

+ 2(
∂2εk

∂kx∂ky
)2 (5.46)

+
3
2
(
∂εk

∂kx

∂3εk

∂kx∂k2
y

+
∂εk

∂ky

∂3εk

∂ky∂k2
x

)]δ(ε− εk)
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Using Eq. 2.2 For εk in Eq. 5.47 and doing the integral the following is obtained.

χorb = −2
√

2I4

3π3

µ2
Bm

3
2 v

h̄2ε
1
2

, (5.47)

where the integral I4 is given by
∫ 1
0 dα(−33α10 +41α6−9α2)(1−α4)

−1
2 , α being a dummy

variable. Evaluating the numerical value for I4 and using the dimensionless variable ξ,

Eq. 5.47 reduces to

χorb = − .0798
π3

mµ2
B

h̄2

1√
ξ

(5.48)

It is observed that the orbital susceptibility for the semi-Dirac band structure is al-

ways diamagnetic. The absolute value of the ratio of the paramagnetic to the orbital

susceptibilities(i,e the ratio of Eq. 5.45 to Eq. 5.48)of the semi-Dirac dispersion is given by

|χpara

χorb
| ≈ 100ξ (5.49)

This ratio is small due to the presence of ξ, which is small for the V O2 system as was

mentioned before. Hence it is concluded that the orbital magnetic susceptibility for the

semi-Dirac dispersion dominates the paramagnetic susceptibility. This result is distinct

qualitatively from both the Dirac and the parabolic dispersion cases. For the doped Dirac

dispersion the orbital susceptibility vanishes identically. For conventional two dimensional

parabolic dispersion the orbital susceptibility is calculated using Eq. 5.47, and turns out to

be 6π times smaller than its paramagnetic susceptibility. Hence the unusually large orbital

susceptibility can be considered a characteristic feature of the semi-Dirac dispersion.
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6. KLEIN PARADOX AND THE SEMI-DIRAC DISPERSION

In this chapter results for Klein tunneling of semi-Dirac particles are given. Several ob-

servations about Klein tunneling for the particle-hole symmetric semi-Dirac system are

presented. The problem is given an extra richness by introducing a variable angle that

the barrier makes with respect to the anisotropic dispersion. Comparisons are made with

both other types of point Fermi surface systems (conventional zero-gap semiconductors

and graphene).

6.1 background

The Klein paradox, is the complete transmission of a relativistic electron through a po-

tential barrier even when the barrier is arbitrarily high. This strange phenomenon was

discovered by Oskar Klein in 1929[49][48]. It is an impossibility for a parabolic energy-

momentum dispersion. In that case the probability density outside the potential barrier

decreases exponentially with the increase of the barrier height. In the following Klein tun-

neling is described and a possible explanation of this seemingly paradoxical phenomenon is

given in terms of electron-hole pair production mechanism. A relativistic electron is con-

sidered with energy E and mass m in an one dimensional potential as given in Fig.6.1[48].

It is noticed in the energy range m < E < V −m, the particle and the hole continuum

overlaps. This happens due to the fact that the potential at x > 0 lifts the energies of the

hole/positron sea. With the increase of the height of the potential barrier the width of the

overlap region increases. Klein found that the reflection R and the transmission coefficient

T for this one dimensional problem are

R = [
1− κ

1 + κ
]2, T =

4κ

(1 + κ)2
, (6.1)



E

Fig. 6.1: An electron scattering off a step potential. The hatched region is the electron-continuum
and the grey region corresponds to the hole continuum. k and p are the momenta of the
incident and the transmitted electrons respectively.

where κ is given by

κ =
p

k

E + m

E + m− V
. (6.2)

k is the momentum of the incident particle. p, the momentum of the transmitted particle,

obeys the following relativistic expression

p =
√

(V − E)2 −m2. (6.3)

Using the expression vg = dE
dp for the group velocity vg, one obtains

vg =
p

E − V
. (6.4)

A very interesting observation is made at this point. When E < V , vg is negative if p is

assumed to be positive. From the problem definition, for x > 0 propagation to the right is

expected; but a negative vg does not indicate that. Hence one needs to use a negative sign

on the right side of Eq. 6.3. An electron with a negative momentum is equivalent to a hole
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with a momentum going to the right. Hence there will be a flux of holes moving to the right

causing a transmission current. With the discovery of graphene an opportunity to verify

V

Energies are measured w.r.t this reference line

Conduction band

Valence band

Conduction and Valence bands 

get shifted by an amount V

E: the energy of the 

incident electron

V: the strength of the 

potential barrier

E

X=0 X>0X<0

Fig. 6.2: graphene Valence and Conduction band picture in the context of Klein tunneling.

the Klein phenomenon presented itself. Electron in graphene is described by massless Dirac

equation. Since the graphene dispersion is massless, any energy of the incident electron

E less than V causes the overlap of the particle-hole continua at the two sides of the

potential barrier. In other words, the conduction band in the x < 0 region and the valence

band in the x > 0 region are accessible to the energy E as shown in Fig. 6.2 rendering

Klein tunneling to be possible. Next the semi-Dirac dispersion is considered: Is Klein

tunneling possible for the semi-Dirac dispersion? A semi-Dirac dispersion is a zero-gap,

electron-hole symmetric dispersion. Hence both it’s valence and the conduction bands are

accessible at an energy less than the potential barrier. But as much as the Klein tunneling

is about the overlap of the particle-hole continua, it is also about the mathematical form
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of the dispersion. For example, the Klein tunneling does not happen in bilayer graphene

although it is a zero-gap, electron-hole symmetric dispersion. In the following the Klein

tunneling for the semiDirac dispersion is investigated, and interesting results are brought

into light, which are not characteristics of either the Dirac or the parabolic dispersion.

Substituting the momenta variables by the corresponding differential operators, the

tight-binding Hamiltonian corresponding to the semiDirac dispersion in Eq. 3.13 can be

written as

H = vp̂yτz +
p̂2

x

2m
τx (6.5)

where τ ’s are the Pauli matrices and p̂x(y) are the momenta operators given by −i∂/∂x(y).

To get the essential physics keeping the mathematics as simple as possible, the special case

of normal incidences of a semi-Dirac quasi-particle with a potential barrier of width d

inclined at an angle α with respect to the x(nonrelativistic) axis is considered, as shown

in Fig.6.3. A set of orthogonal axes ξ and η, ξ making an angle α w.r.t the x axis is

defined. The potential has a width d along the ξ axis and is infinitely extended along the

η axis. It is assumed that the energy of the incident semi-Dirac quasi-particle is much

smaller than the barrier potential. There are three regions of interest: to the left of the

barrier where the potential is zero; the middle with nonzero potential; and to the right

of the barrier where the potential is also zero. They are referred to as regions I, II,

and III respectively. The wave-functions in these regions are denoted by ΨI , ΨII , ΨIII

respectively. The momenta operators along the x and the y(relativistic) directions can be

written in terms of the variables ξ and η as follows:

p̂x = p̂ξ cosα− p̂η sinα (6.6)

p̂y = p̂ξ sinα− p̂η cosα,

where p̂ξ(η) are the momenta operators given by −i∂/∂ξ(η). Since only the normal inci-

dence is considered the η degree of freedom can be eliminated from the problem. Hence
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I II III

d

α

η

x

y

ξ

Fig. 6.3: The top view of the potential barrier is shown. It extends infinitely in one direction,
but limited to a spatial length d in the orthogonal direction. An electron with energy E
and making an angle alpha with the non-relativistic direction is incident normally on the
potential.

the Hamiltonian in Eq. 6.5 takes the following form:

H = p̂ξv sinατz +
1

2m
p̂2

ξ cos2 ατz. (6.7)

For a finite value of α the forward propagating wave, which is of the form eikξ times a

spinor, is an admissible eigenstate of the Hamiltonian. With that ansatz the Hamiltonian

in Eq. 6.7 becomes

H = vk sinα[τz + tan θτx], (6.8)
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where tan θ = cos2 α
sin α

k
2mv . When k goes to −k(as is the case when one considers the

backward propagating wave e−ikξ instead of the forward propagating wave eikξ), aside from

the positive multiplicative factor h̄vk the Hamiltonian in Eq. 6.7 goes from τz +tan θτx to

−[τz − tan θτx].

6.2 The Derivation of the Resonance Condition

The time independent Schrodinger equation in a given potential can be written as

hψ = (E − V )ψ, (6.9)

where h is the part of the Hamiltonian without the potential V . In regions I and III,

E − V is positive. Hence the positive eigenvalue solutions as given by Eq. .25b in the

Appendix for the forward propagating wave and by Eq. .27b for the backward propagating

wave need to be considered in those regions. In region II, V being much larger than E

results in (E − V ) being negative. Hence the negative eigenvalue solutions as given by

Eq. .25c and Eq. .27c appearing in the appendix are of importance in that region. k’s in

regions I and III are equal and is denoted by k1. k is denoted by k2 in region II. k1 and

k2 are given by

vk1 sinα(cos θ1)−1 = E, (6.10a)

vk2 sinα(cos θ2)−1 = V0 − E, (6.10b)

where θ1 and θ2 are given by

tan θ1(2) =
cos2 α

sinα

k1(2)

2mv
(6.11)
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Finally, the wave functions in the three regions are

ΨI = eik1ξ




cos(θ1/2)

sin(θ1/2)


 (6.12)

+re−ik1ξ




sin(θ1/2)

cos(θ1/2)


 ,−∞ < x < 0,

ΨII = t1e
ik2ξ




sin(θ2/2)

− cos(θ2/2)




+r1e
−ik2ξ




cos(θ2/2)

− sin(θ2/2)


 , 0 < x < d,

ΨIII = t2e
ik1ξ




cos(θ1/2)

sin(θ1/2)


 , d < x < ∞,

where r,t1,r1 and t2 are constants. It is noticed that in the regions I and II both the

forward and backward traveling (reflected) waves are present. In region III only the

forward traveling but no reflected wave is considered. The absolute square of t2 gives the

transmission coefficient. t2 is solved for matching the wave functions at the boundaries

y = 0 and y = d, and the following expression for |t2|2 is obtained:

|t2|2 =
(sin θ2 cos θ2 cos θ1)2

A2 + B2 − 2AB cos k2d
, (6.13)

where A and B are given by:

A = [sin((θ2 − θ1)/2) cos θ2 (6.14)

+ sin(θ2 + θ1)/2] cos((θ2 − θ1)/2)

B = sin θ2 sin2((θ2 + θ1)/2)

63



It can be shown when

cos k2d = 1, (6.15)

the denominator in Eq. 6.13 becomes exactly equal to the numerator. The resonance

condition as given by Eq. 6.15 implies

k2d = 2nπ, (6.16)

where n is an integer. From Eq. 6.10b and Eq. 6.16 the following condition for complete

transmission of an incident wave is obtained:

(2πv/d)(n2 sin2 α + n4 cos4 α(π/mvd)2)
1
2 (6.17)

= V0 −E

Eq. 6.17 gives the resonance condition when α is not equal to π/2. For α = π/2, θ1 and

θ2 as given by Eq. 6.11 are zero, which makes |t2|2 given by Eq. 6.13 indeterminate (0
0

form). Hence Eq. 6.17 can not directly be used for that case. α = 0 case will also need

separate consideration, one of the reasons being tan θ appearing in the Hamiltonian given

by Eq. 6.8 becomes infinite when α is equal to zero. The other important reason is, as will

be seen, the Hamiltonian admits evanescent as well as propagating wave solutions when α

is set to zero.

6.3 Special Cases

Case I. α = π
2

As for the special cases, first the potential is considered to be perpendicular to the rel-

ativistic direction (α = π
2 ). With the ansatz of the forward propagating wave eikyy, the
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Hamiltonian in Eq. 6.5 takes the following form in the k space:

H = vkyτz, (6.18)

the eigenvalues of which are ±vky. With the backward propagating wave ansatz e−ikyy

the Hamiltonian in Eq. 6.5 reduces to a matrix, which is the negative of the one appearing

in Eq. 6.18, and hence with the same eigenvalues; but the eigenfunctions being reversed.

The wave-functions in the three regions are

ΨI = eik′1y




1

0


 + r′e−ik′1y




0

1


 ,−∞ < y < −d, (6.19)

ΨII = t′1e
ik′2y




0

1


 + r′1e

−ik′2y




1

0


 ,−d < y < d,

ΨIII = t′2e
ik′1y




1

0


 , d < y < ∞,

where r′,t′1,r
′
1 and t′2 are constants. k′1 and k′2 are given by h̄k′1 = E and h̄k′2 = V − E

respectively. Following the previous discussion about the sign of E − V appearing on the

right side of Eq. 6.9, eigenvalues of appropriate signs and corresponding eigenfunctions are

considered for different regions (regions I, II and III). The absolute square of t′2 gives the

transmission coefficient. Matching the wavefunctions at the boundaries y = 0 and y = d,

the following is obtained:

|t′2|2 = |e−i(k′1+k′2)d|2, (6.20)

which is equal to 1. So it is seen that in case the potential is in the relativistic direction

there is complete transmission for the normal incidence. Now k′2 gets large as the potential

V gets large. But k′2 being in the argument of an oscillatory function given by Eq. 6.20, the

transmission coefficient |t′2|2 remains 1, which assures complete transmission even when
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the potential barrier is large.

Case II.α = 0

Next the potential is considered to be perpendicular to the x (the non-relativistic direction).

The Hamiltonian admits propagating as well as evanescent wave solutions. The y-

component of the momentum ky is zero since the particle is incident normally. For the

propagating waves e±ikxx The Hamiltonian in Eq. 6.5 takes the following form in the k

space:

H =
k2

x

2m
τx, (6.21)

the eigenvalues of which are ± k2
x

2m . For the evanescent wave of the form e±kxx, Eq. 6.5

becomes the negative of the Hamiltonian given by Eq. 6.21, the eigenvalues remaining un-

changed. The eigenfunction corresponding to the positive-eigenvalue of one of the Hamil-

tonians is the same as the eigenfunction corresponding to the negative-eigenvalue of the

other Hamiltonian and vice versa.

The energy of the incident particle for both the propagating and the evanescent cases

are the same:(E = k2
x

2m). Considering the propagating waves first, for regions I and III like

before one takes into account the positive eigenvalue solution of the Hamiltonian given by

Eq. 6.21 and as for region II, the negative eigenvalue solution of the same Hamiltonian.

As for the evanescent waves, appropriate eigenfunctions are used for regions I IIand III

keeping in mind that the Hamiltonian is negative of that of the propagating case. kx’s in

regions {I,III} and II are denoted by k′′1 and k′′2 respectively, where k′′1 and k′′2 are given
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by
√

2mE and
√

2m|V −E| respectively. The wave functions in the three regions are

ΨI = eik′′1 x




1

1


 + r′′e−ik′′1 x




1

1


 (6.22)

+t′′′ek′′1 x




1

−1


 ,

−∞ < x < −d,

ΨII = t′′1e
ik′′2 x




1

−1


 + r′′1e−ik′′2 x




1

−1




+t′′′1 ek′′2 x




1

1


 + r′′′1 e−k′′2 x




1

1


 ,

−d < x < d,

ΨIII = t′′2e
ik′′1 x




1

1


 + r′′′2 e−k′′1 x




1

−1


 ,

d < x < ∞,

where r′′, t′′′, t′′1, r
′′
1 , t′′′1 , r′′′1 , t′′2, r

′′′
2 are constants. In Eq. 6.22, for regions I and III the

evanescent waves are constructed in such a way that they don’t blow up when |x| becomes

large. There is no backward traveling wave in region III. |t′′2|2 is the transmission coeffi-

cient. Equating the wave functions and its derivatives at the boundaries x = 0 and x = d,

the following is obtained for the transmission coefficient

|t′′2|2 = | 4ik′′1k′′2e−ik′′2 d

e−k′′2 d(k′′2 + ik′′1)2 − ek′′2 d(k′′2 − ik′′1)2
|2. (6.23)

Eq. 6.23 is the same as what appears in [39] in the context of the tunneling probability for

the bilayer graphene dispersion. k′′2 gets large as the potential V gets large. Because of

the presence of the exponential factor ek′′2 d in the denominator, the transmission coefficient

given by Eq. 6.23 goes to zero as the potential goes to infinity. So there is no transmission

when the potential is in the non relativistic direction and the particle is incident normally.
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6.4 Summary of Klein Tunneling in the Context of Semi-Dirac Band structure

Fig. 6.4: Complete transmission for various orientations of the potential

The summary of our study is diagrammatically represented in Fig. 6.4. It is concluded

as far as normal incidences are concerned, the semiDirac material is perfectly transmitting

if the potential is along the direction in which the energy momentum dispersion is rela-

tivistic, but opaque for the orientation of the potential in the non-relativistic direction.

If the potential barrier is aligned at a finite angle w.r.t the non-relativistic direction one

obtains a resonance condition for complete transmission as given by Eq. 6.17.
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7. TOPOLOGICAL ASPECT OF THE SEMI-DIRAC BAND STRUCTURE:
CALCULATION OF BERRY’S PHASE

7.1 Introduction

In this section Berry’s phase[58] associated semi-Dirac dispersion is discussed. Berry’s

phase is a topological phase. As the Hamiltonian is changed adiabatically by varying a

parameter, in addition to an overall dynamic phase, the eigenfunction of the Hamiltonian

acquires the Berry’s phase. For determining the Berry’s phase, the parameter is brought

back to its initial value. In other words the parameter describes a loop in the parameter

space. In most cases Berry’s phase is zero. It can be nonzero if there is a degeneracy in the

spectrum of the Hamiltonian. Berry’s phase for ordinary parabolic dispersion is zero. It

has also been discussed in the context of Dirac dispersion[52] and turns out to be nonzero

for that case.

Berry’s phase (γn) for the nth band is given as

γn =
∫ ∫

S
Bn(k).dS, (7.1)

where S is the area enclosed by the loop in the parameter space, and Bn is the Berry’s

curvature corresponding to the nth band, described in the following. Let |n > be the nth

eigenstate of the Hamiltonian. The corresponding Berry’s connection An is defined as

An = −Im < n|∇n > . (7.2)

Berry’s curvature for the nth band is the curl of An (∇×An), which can also be written



as

Bn = −Im
∑

n′ 6=n

< n|∇H|n′ > × < n′|∇H|n >

(En′ −En)2
(7.3)

In Eq. 7.3, the summation is restricted to different bands only (n 6= n′). If it happens to

be the case that the energies of the two different bands n and n′ are equal, (i.e, En′ = En),

in other words there is a degeneracy in the spectrum of the Hamiltonian, the denominator

in Eq. 7.3 becomes zero. It is less likely that the off-diagonal terms in the Hamiltonian

matrix appearing in the numerator will also be zero. Under that circumstance the Berrry’s

curvature will have a singularity. Referring to Eq. 7.1, a singularity in Berrry’s curvature

would imply the Berry’s phase γn being non-zero[The property of a delta function is

recalled here].

7.2 Berry’s phase for the Dirac dispersion

It was mentioned before that Berry’s phase for the Dirac dispersion is non-zero. A deriva-

tion of that is given in the following [52]. The Hamiltonian for the Dirac dispersion is

given as

H = h̄vkh̃D, (7.4)

where h̃D is the matrix given by

h̃D =




0 e−iθk

eiθk 0,


 (7.5)

The phase θk appearing in Eq. 7.5 is given as

θk = arctan
ky

kx
. (7.6)
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The normalized eigenstates of the Hamiltonian in Eq. 7.5 are 1√
2




1

eiθk


 and 1√

2



−e−iθk

1




with the eigenvalues 1 and −1 respectively. Plugging the eigenfunction with negative

eigenvalue in Eq. 7.2, the Berry’s connection for the lower band of the Dirac dispersion is

obtained as

A = −1
2
∇kθk. (7.7)

∇k correspond to the gradient w.r.t k. Using Eq. 7.6 for θk in Eq. 7.7 an explicit expression

for the Berry’s connection of the semi-Dirac Hamiltonian is obtained

A = − 1
2k

θ̂, (7.8)

where θ̂ is the direction shown in Fig.7.2. The Berry’s connection given by the curl of

k
r

xk

θ̂

yk

Fig. 7.1: The square contour along which the integration the Berry’s connection is integrated.

Eq. 7.8 vanishes identically everywhere except at (kx, ky) = (0, 0) as can be checked by a
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straightforward calculation. Both the Berry’s connection and curvature blow up at k = 0.

The Berry’s phase can be computed by integrating A around a contour containing the

point of singularity. Since the result is independent of the shape of the contour, a circle of

radius k is chosen as shown in Fig. and A is integrated along it. Now A given by Eq.7.8

being proportional to 1
k and the length of the circular contour being proportional to k,

the integral of A along the circular contour gives a finite number, which turns out to be π

considering the right numerical factors in obtaining the result. This value of Berry’s phase

is obtained for the eigenfunction with the negative eigen value. A similar calculation with

the eigenfunction corresponding the positive eigen value will give −π for the Berry’s phase.

7.3 Berry’s phase for the semiDirac dispersion

As mentioned at the end of the Ch.3, semi-Dirac dispersion follows from more than one

Hamiltonian. To investigate the Berry’s phase problem the semi-Dirac Hamiltonian given

by Eq. 3.17 is chosen to facilitate the comparison with Dirac Hamiltonian. With the

dimensionless variables Kx and Ky and the energy scale ε0 defined at the beginning of

Ch.2, one can write Eq. 3.17 as

H = ε0(K4
x + K2

y )
1
2 h̃sD, (7.9)

where h̃sD is the matrix given by

h̃sD =




0 e−iθK

eiθK 0,


 (7.10)

The phase θK appearing in Eq. 7.10 is given as

θK = arctan
Ky

K2
x

. (7.11)
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The eigenstates of the Hamiltonian in Eq. 7.10 are




1

eiθK


 and



−e−iθK

1


 with the

eigenvalues 1 and −1 respectively. Plugging the eigenfunction with negative eigenvalue in

Eq. 7.2, the Berry’s connection for the lower band of the semi-Dirac dispersion is obtained

as

A = −1
2
∇KθK. (7.12)

∇K correspond to the gradient w.r.t K. Using Eq. 7.11 for θK in Eq. 7.12 an explicit

expression for the Berry’s connection of the semi-Dirac Hamiltonian is obtained

A = − h̄

4mv
[− 2KyKx

K4
x + K2

y

î +
K2

x

K4
x + K2

y

ĵ]. (7.13)

The Berry’s connection given by the curl of Eq. 7.13 vanishes identically everywhere ex-

cept at (Kx,Ky) = (0, 0) as can be checked by a straightforward calculation. Does the

Berry’s curvature remain zero even at (Kx = 0,Ky = 0)? The vector field A blows up

at that point as can be seen from Eq. 7.13, but that does not necessarily imply that the

Berry’s connection also has a singularity there. To explain this point, an example from

the electrostatics is borrowed. The electric field E due to a point charge q is given by

E = q
r2 r̂, where r denotes the distance from the charge. It blows up at r = 0. This is

also reflected in one of the Maxwell’s equations, viz., ∇.E = ρ(the charge density). For

a point charge ρ assumes the form of a delta function. But the curl of the electric field

due to the same point charge does not have a delta function singularity at r = 0. In fact

∇ × E = 0 everywhere including at r = 0. This becomes clear when the definition of

a curl of a vector field is considered in terms of a limiting process. ∇ × E is defined as

∇ × E ≡ limAloop→0

∮
E.dl

Aloop
, where Aloop is the area of the loop enclosing the point under

consideration, which in this case is the r = 0 point. This definition of curl becomes the

conventional expression for curl involving derivatives of various components of the vector

field, when the derivatives are defined at the point under consideration. Considering a
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circular loop (the result holds for other types of loops too), E is always perpendicular to

the the line element dl, resulting in the line integral in the definition of curl mentioned

above to be zero, irrespective of how small the loop is, i.e, how close one is to the point

r = 0 under question. Hence it is concluded that ∇×E = 0 at r = 0.

In order to compute the Berry’s curvature for the semi-Dirac dispersion at the point

Kx = Ky = 0 the following expression is used for ∇×A

∇×A ≡ lim
Aloop→0

∮
A.dl

Aloop
. (7.14)

In the following the numerator of Eq. 7.14 is evaluated for a square contour. The square

I

II

III

IV (0,0)

ε2

ε2

x
K

y
K

Fig. 7.2: The square contour along which the integration the Berry’s connection is integrated.

contour has four sides marked by the Roman letters I through IV , as shown in Fig.7.2.

Using Eq. 7.13, and the line element dk = p
h̄dK, where p is the usual momentum scale

associated with the semi-Dirac dispersion, the line integral of the Berry’s connection A
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can be written explicitly as

∮
A.dk = −1

2
[− 2KyKx

K4
x + K2

y

dKx +
K2

x

K4
x + K2

y

dKy]. (7.15)

In the following Eq. 7.15 is evaluated for all the sides of the square of Fig.7.2. Along the

side I, Ky = −ε, a constant, which implies that dKy = 0 in Eq. 7.15 and Kx varies from

−ε to ε. Hence the integral in Eq. 7.15 becomes −ε
∫ ε
−ε

KxdKx
K4

x+ε2
, which gives a zero since

the integrand is an odd function. In a very similar similar way one can show that the line

integral is zero along the side III of the square. As for the side II, Kx = ε, a constant,

implying dKx = 0. Hence from Eq. 7.15 one obtains
∫ ε
−ε

ε2dKy

ε4+K2
y
. This is non-zero, but of

opposite sign compared to the contribution from side IV . Hence when the contributions

from the sides II and IV are added it gives zero. Hence the line integral along the square

contour is zero, irrespective of the size of the square, indicating that the Berry’s curvature

as given by Eq. 7.14 is zero for the semi-Dirac Hamiltonian. Other closed contours like

a rectangle or a trapezoid have been tried, all of them confirming the line integral being

zero. Finally an argument is given, which is based on transporting an eigenfunction along

a closed contour. The Berry’s phase can be obtained by a continuous transportation of the

eigenfunction of the Hamiltonian over a closed contour. If the sign of the eigenfunction

reverses after it comes back to the same point it started from, the Berry’s phase is non-

trivial. In case the eigenfunction maintains the sign, the Berry’s phase is zero. One starts

with an eigenstate of the Hamiltonian, and transports it along a closed loop. In the problem

of the Dirac dispersion one needs to worry about the continuity of the eigenfunction at

kx = 0, where there is a discontinuity in θk given by arctan ky

kx
.(arctan ky

kx
= −π

2 or π
2

depending on whether kx approaches 0 from the left or the right side of zero respectively.)

No such problem exists for semi-Dirac dispersion. For semi-Dirac, due to the presence of

K2
x instead of Kx in the expression for θK given by Eq. 7.11, θK is continuous at KX = 0.

What that means is when an eigenstate of the semi-Dirac Hamiltonian given by Eq. ?? is

transported along a circle it’s phase does not face a discontinuity. So when it comes back
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to where it started, the sign of the eigenfunction does not get changed. This is a clear

indication of Berry’s phase being zero.

7.4 conclusion

In this chapter the topological aspect of the semi-Dirac dispersion was discussed. The

finding is somewhat surprising: semi-Dirac dispersion, which has a point Fermi surface like

a Dirac dispersion, and more complex (in terms of anisotropy) as compared to the Dirac

dispersion, is topologically simpler than the latter. That was verified by direct calculation

as well as by transporting an eigenfunction around a closed loop. It was mentioned at

the end of chapter 3 that a semi-Dirac Hamiltonian can have various forms. For a ‘real’

semi-Dirac Hamiltonian the Berry’s phase is trivially zero. In this chapter it is shown that

the result holds even when the Hamiltonian is complex.
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8. THE ENERGY LEVEL STATISTICS FOR THE SEMIDIRAC DISPERSION

8.1 Introduction

In this chapter Quantum Chaos and its relevance to the semi-Dirac dispersion is discussed.

Quantum Chaos is a relatively new idea which began with serious investigations by Michael

Berry, Gutzwiller and other proponents in the field. In the following, a brief description

of the basic concepts of Quantum Chaos is given. The discovery of the classical Chaos

theory[67], a very important one in contemporary physics, was a severe blow to the pre-

dictive power of Newtonian mechanics. With the help of Newton’s law one can predict

the trajectory of an object accurately, given its initial position and the velocity. But with

the advent of the Chaos theory things did not remain that simple any more. According

to Michael Berry[57], “Chaos is instability that persists, so that motion, although strictly

determined, is so sensitive that prediction is effectively impossible. With chaos, there is no

regularity, no strict repetition. The weather is a familiar example. Another is the erratic

rotation of one of the satellites of the planet Saturn, namely Hyperion, a potato-shaped

rock about the size of New York City.” After the Chaos theory, the determinism remained

purely in the mathematical sense: in a chaotic system if one could specify the initial

conditions with infinite accuracy, a trajectory could be determined precisely. Two trajec-

tories with very small differences in their initial conditions will evolve very differently over

time. So for all practical purposes the notion of predictability is seriously compromised.

However, there seems to be a very interesting connection between the classical chaos and

quantum mechanics.



8.2 Connection between Classical Chaos and Quantum mechanics

Due to the works of Bohr, Heisenberg, Schrodinger and others Quantum mechanics was de-

veloped in the 1920’s, which revolutionized the way physics was thought before that: it be-

came impossible to talk about trajectories any more. One could only predict the probabil-

ity of an event with the help of Schrodinger’s equation. As an alternative to the Schrodinger

equation approach, Richard Feynman introduced the path integral technique[53], accord-

ing to which the probability amplitude of a particle to go from a point A to another point B

is a function of all the possible paths that the particle can take between A and B. Different

paths are weighted differently, the greatest weight being associated with the classical path,

i,e the path which satisfies the Euler Lagrange equation or in simpler terms Newton’s law

of motion. The path integral technique allows one to think in terms of paths for solving

quantum mechanical problems. Path integral has a deep philosophical significance in the

sense that it unifies the classical and the quantum mechanics. The classical limit of quan-

tum mechanics is achieved as the Planck’s constant h̄ goes to 0 as explained below. h̄ in

essence is the quantum of action. According to the Feynman path integral technique[53],

the propagator is given by:

K(b, a) =
∫ b

a
Dxe

i
h̄

S , (8.1)

where S is the action given by
∫

Ldt, L being the Lagrangian of the system. As h̄ goes

to zero, the phase factor in Eq.8.1 oscillates rapidly and the greatest contribution to the

path integral comes from the path which has the zero first order variation(stationary phase

approximation). It can be shown that the path for which the above criterion is met is the

classical trajectory of the particle. That is how Newton’s law enters in the formulation

of quantum mechanics. It can be shown in the semiclassical approximation (h̄ → 0), the

non-relativistic propagator takes the following approximate expression[25]:

K(b, a) ≈ (2πih̄)−
1
2 (−| ∂2S

∂xb∂xa
|)− 1

2 e
i
h̄

S , (8.2)
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where xa and xb denote the co-ordinates of the points A and B respectively. In a system

whether there is chaos or not depends on how the potential function and its derivatives

behave over a region. An analogy can be drawn w.r.t the stability of a dynamical system.

Stability is determined by the sign of the second derivative of the potential. The positive

sign of the second derivative indicates stability, whereas the negative sign indicates the

lack of it. Through the expression ∂2S
∂xb∂xa

appearing in Eq.8.2, the derivatives of the po-

tential enter into the expression of the semi-classical propagator; and the potential itself

enters through the action function S. Hence Eq.8.2 establishes a link between classical

chaos and quantum mechanics. This relationship leads to many interesting consequences.

The presence of chaos in the corresponding classical problem leaves its quantum signa-

ture, for example, in the statistics of the spacing of the consecutive energy levels. In the

subsequent sections this particular aspect of quantum chaos is described in details and

how it plays out for the semi-Dirac dispersion is investigated. Before going into that this

section is concluded by mentioning one fascinating aspect of quantum chaos: even when

chaos is present in the system, quantum mechanics is able to make precise predictions.

For example, the problem of scattering of an electron by a complicated (chaotic) potential

field can in theory be solved both classically and quantum mechanically. But the differ-

ence between the two is more fundamental than just being different in their predictions.

By use of classical mechanics one is not even able to make sensible predictions about the

physical observables due to the sensitive dependence of the trajectories to the initial con-

ditions, whereas the quantum mechanical expressions are not beset with such problems

for computing the same physical quantities. In a sense quantum mechanics takes care of

the philosophical questions about the issue of predictability which had beset the field of

physics after the advent of Chaos theory. Hence Michael Berry pointed out [57], ‘There is

no Quantum Chaos’, and instead of calling it Quantum Chaos coined the term ‘Quantum

Chaology’.
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8.3 Energy Level Statistics

The study of energy level statistics first originated in the context of nuclear physics, where

the Hamiltonian could not be specified exactly. Wigner came up with the idea that one

does not need to know about the details of a Hamiltonian other than the fact that the ele-

ments of the Hamiltonian matrix are random. This line of thought culminated in ‘Random

Matrix Theory’[54, 55, 56] which deals with the the energy level statistics of a random ma-

trix. Wigner showed that for a random matrix, the distribution of eigenvalues(as opposed

to the spacing between the consecutive eigenvalues, which will be discussed in the subse-

quent sections) take the shape of a semi-circle, which is known as the Wigner’s semi-circle

law. This is pretty remarkable because of its universality: Wigner’s semi-circle law does

not depend on any specific distribution that the elements of the random matrix follow. The

energy level statistics turns out to be a powerful tool even when the Hamiltonian is known

completely. The universality behavior of the statistics of the normalized energy level spac-

ings can be exploited to ascertain whether chaos is present in the system or not. There are

primarily two different types of universal distribution function for the normalized energy

level spacing: Poisson and Gaussian Orthogonal Ensemble (GOE). The Poisson distribu-

tion is given by the expression: e−s, where s is the normalized energy level spacing. [The

normalization procedure(also called the ‘unfolding process’) will be described in details

later.] The GOE distribution is given by π
2 se−

π
4
s2

. If the billiards has less symmetry in

it, either due to a less symmetric boundary or because of an energy momentum dispersion

lacking in a specific symmetry, the latter being the case for the semi-Dirac dispersion,

the statistics is no more either of the two types of distributions mentioned above. The

distribution in that case is a superposition of N independent GOE distributions[68], the

mathematical form for the resulting distribution being given by ∂2

∂s2 [erfc(
√

π
2

s
N )]N , where

erfc denotes the complementary error function, which is written in an integral form as

erfc(z) = 2√
π

∫∞
z dte−t2 . N is an integer. For N = 1 the distribution reduces to the

conventional GOE distribution. For N = 2, the distribution starts from a non-zero value

at s = 0. [The distributions considered in this chapter will primarily fall into Poisson,
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GOE, or superposition of independent GOEs corresponding to N = 2]. The three types

distributions are shown in Fig.8.1.
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Fig. 8.1: Distributions of s

When chaos is present in the corresponding classical problem, the normalized level

spacings of the quantum energies follow the GOE (or superposition of independent GOEs)

distribution as opposed to the Poisson distribution, which corresponds to a problem with-

out chaos[59]. The GOE(or superposition of independent GOEs) distribution is quali-

tatively different from the Poisson distribution in the feature that the former goes to a

maximum for a non-zero value of s, whereas the latter peaks at s = 0, s being propor-

tional to the energy level spacing. That means the energy levels corresponding to the

GOE (or superposition of independent GOEs) distribution repel each other. Hence it can
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be said that the energy level repulsion is a feature of a chaotic system. The energy level

repulsion indicates that the energies are not distributed randomly. When the energy lev-

els are distributed randomly, it can mathematically be proved that s follows a Poisson

distribution[25]. Summarizing, the presence of energy level repulsion is a signature of

chaos, whereas the absence thereof is an indicator of regularity in a system. This is rather

interesting: although chaos in classical mechanics implies irregularity in the phase space,

the energy levels in the corresponding quantum problem are not randomly distributed.

8.4 The quantum billiards

A Quantum billiards[59][60][61] is essentially the system of an electron confined in an infi-

nite potential. With the advent of crystal growth and lithographic techniques, devices in

the micro or nanometer scale have been built[59]. They in the low temperature limit can

be thought of as physical realizations of Quantum billiards. An electron in such a device is

primarily scattered by the device boundary, and not by the impurities. Experimentation

on Quantum billiards can be performed with Scanning Tunneling Microscopy[59][63]. The

Quantum billiards problem requires solving for Schrodinger’s equation for an infinite po-

tential well. For such a problem, the wave function needs to vanish at the boundary, which

gives rise to the quantized energies. For different boundary shapes the energy levels will be

different. Hence one can construct the statistics for the s variable for different boundaries.

It turns out for irregularly shaped boundaries, the energy level statistics is more GOE

(or superposition of independent GOEs) type than the Poisson type. Fig.8.2 shows the

energy level statistics for various types of billiards. For them, the kinetic energy term in

the Hamiltonian is proportional to the Laplacian operator. The corresponding quantum

billiards problems are called ‘parabolic type’, since the Laplacian, when transformed in

the momentum space, becomes a quadratic function of the momentum. These results will

later be contrasted with those obtained for the quantum billiards corresponding to the

semi-Dirac dispersion.
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Fig. 8.2: Energy Level Statistics for Quantum billiards of various shapes[59]. The energy momen-
tum relationship in all of them is parabolic.

8.5 Solving for the Energies of the Quantum Billiards by Expansion Method

In quantum billiards the eigen-energies can be calculated exactly only in a very few specific

cases, e.g., a parabolic type problem(explained before) with a circular boundary. For

the rest of the situations, approximate techniques[62] are necessary. In this section an

approximate technique called the expansion method[59] is explained. This method is later

used for the quantum billiards problem for the semi-Dirac dispersion. Fig.8.3 describes an

arbitrary shaped boundary for the Quantum Billiards problem. Let the domain enclosed

by the boundary be denoted by D. The Schrodinger equation for the problem can be
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Fig. 8.3: The Quantum Billiards problem with an arbitrary shaped boundary. There are three
regions I, II, and III. The potential is zero in region I and infinite in region III. In region
II it is of magnitude V0.

written as:

(Ĥ ≡ − h̄2

2m
∇2 + V (r))Ψ = EΨ, (8.3)

where

V (r) = 0, r ∈ D (8.4)

= ∞, otherwise.

The quantum mechanical wave-function should vanish at the boundary ∂D of the region

D, since the potential is infinite everywhere outside D. In order to solve this problem

by the Expansion method, the eigenstates of the Hamiltonian corresponding to a slightly

different problem, are considered. For this new problem it is assumed that the potential
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is infinite at the enclosing rectangular boundary as given in Fig.8.3. The corresponding

eigen-functions are given by

φn1,m1 =
√

2
a1

sin(
π

a1
n1x1)

√
2
a2

sin(
π

a2
m1x2), (8.5)

where n1 and m1 are integers and a1 and a2 are the dimensions of the rectangle. x1 and

x2 correspond to the two orthogonal axes. The region inside the rectangle is divided into

regions I and II as shown in the figure. It is assumed that the potential takes a value V0

in region II. As V0 approaches ∞, the potential becomes the same as that given by Eq.8.4.

Ψ, the solution to Eq.8.3, can be written as a linear combination of φn1,m1s appearing in

Eq.8.5, since they constitute a complete set of functions.

Ψ =
∑

i,l

Ci,lφi,l, (8.6)

where Ci,l are constants. Inserting Eq.8.6 in Eq.8.3, multiplying the resulting expression

by φ∗n1,m1
, and φn2,m2 from the left and the right respectively, and integrating over the

rectangular region depicted in Fig.8.3, the following is obtained

∑
m1,m2

(Hn1,m1,n2,m2 −Eδn1,m1,n2,m2)Cn1,m1 = 0, (8.7)

where Hn1,m1,n2,m2 is given by

Hn1,m1,n2,m2 =
∫ ∫

d2rφn1,m1(r)Ĥφn2,m2(r), (8.8)

Ĥ being the Hamiltonian operator appearing in Eq.8.3. Using the fact that the potential

is zero in region I, but assumes the value V0 in region II(Fig.8.3), Eq.8.8 can be expressed

as

Hn1,m1,n2,m2 =
π2h̄2

2m
[(

n1

a1
)2 + (

m1

a2
)2]δn1,n2δm1,m2 + V0vn1,n2,m1,m2 , (8.9)
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where

vn1,m1,n2,m2 =
∫ ∫

II
d2rφn1,m1(r)φn2,m2(r). (8.10)

The first term in Eq.8.9 is the kinetic energy term. The orthogonality of the φm1,m2(r)

functions have been used to derive Eq.8.8. The eigen-energies of the Hamiltonian can be

found by setting the determinant of the matrix (Hn1,m1,n2,m2 − Eδn1,m1,n2,m2) appearing

in Eq.8.7 to zero, which in the following is expressed in an equation form

|Hn1,m1,n2,m2 −Eδn1,m1,n2,m2 | = 0. (8.11)

The matrix Hn1,m1,n2,m2 is an infinite matrix since each of the suffixes can go from 1 to ∞.

For numerical calculations one can not work with an infinite matrix, and hence one needs

to truncate Hn1,m1,n2,m2 for some finite values of its suffixes. There is no hard and fast

rule for how large the truncated Hamiltonian matrix need to be. It depends on the specific

problem at hand. At this point it is worth mentioning that the eigenvalues obtained by

the expansion method tend to the ideal ones as V0 tends to ∞. But increasing V0 without

increasing the number of the φn1,m1 ’s in Eq.8.6 might lead to less accurate results. So one

needs to use a sufficiently large value of V0 which will go with a reasonably large number

of basis functions φn1,m1 ’s. Of the computed eigenvalues only the lower ones are accurate.

A criterion, based on Weyl’s formula, regarding how many eigenvalues from the lower end

to trust, will be described.

8.6 Weyl’s formula

Once the eigen-energies are computed the differences between consecutive energy levels

are normalized with the help of Weyl’s formula by a technique called ‘unfolding’. Weyl’s

formula counts the number of energy eigenstates less than a given eigen-energy, which is
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also the same as the integrated density of states given by [25]

N(E) =
1

(2πh̄)g

∫
dE

∫
dgpdgqδ(E −H(p, q)), (8.12)

where g is the geometrical dimension of the problem. N(E) is proportional to the number

of states in the phase space constrained by the geometrical boundary of the billiard in

the real space and the constant Fermi contour in the momentum space. As an example

of how to obtain an expression for N(E), that quantity in the following is derived for the

parabolic dispersion. The energy momentum relationship for the parabolic dispersion is

E = p2

2m . The Fermi contour is a circle, the area of which is given by πp2 = π2mE. Hence

the total area of the phase space under consideration is A(π2mE), A being the real space

area of the billiard. From Heisenberg’s uncertainty principle, the unit of phase space area

is h2, where h is the Planck’s constant. [The square coming from the fact that the problem

is two-dimensional]. Hence the number of states in the above-mentioned phase space is

Aπ2mE
h2 = A

4π
2mE
h̄2 . So Eq. 8.12 for the parabolic dispersion reduces to:

N(E) =
A

4π

2mE

h̄2 . (8.13)

The Weyl’s expression NsD for the semi-Dirac spectrum is obtained by taking the integral

of the expression appearing in Eq. 2.4 (i.e. finding the integrated density of states) and

then multiplying that by the real space area A of the billiard

NsD(E) = A
(2m)

1
2 ε

3
2

π2h̄2v

2
3

∫ 1

0

dk′x√
1− k′x

4
. (8.14)

Next a dimensionless energy variable ε is defined as E = h̄2π2

2ma2 ε. In terms of the new

variable NsD(E) becomes

NsD(E) = .8740
A

αa2
ε

3
2 . (8.15)
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The numerical pre-factor in Eq. 8.15 is obtained by combining the numerical factor and

the integral appearing in Eq. 8.14. Using the fact that A, the geometrical area of the circle

of diameter a, is given by πa2

4 , Eq. 8.15 becomes

NsD(E) = .8740
π

4α
ε

3
2 . (8.16)

NsD will be used for later calculations.

8.7 The method of the unfolding of the spectra

To compute the energy level statistics, one needs to unfold the spectra first. In the following

it is explained what that means and how that is carried out.

In Fig.8.4, N computed from the eigenvalues obtained by actual diagonalization of

the Hamiltonian is plotted against the energy E. The shape of the function has the

appearance of a staircase and hence called the stair-case function. If there is only one state

corresponding to a given energy (that is, no degeneracy), the staircase function increases

by one as one moves to the next energy. But it is not so for the case with degeneracies. The

jump in the stair-case function at an energy will then be proportional to the degeneracy

corresponding to that energy. In order to compute the energy level statistics one can not

directly work with this rather rough-looking staircase function. Instead, one considers the

Weyl’s expression for N given by Eq. 8.13 or Eq. 8.15. Plotting N obtained by direct

diagonalization of the Hamiltonian and that obtained from Weyl’s expression together,

only those eigenvalues are accurate which correspond to the region where the two curves

are quite close to each other. There are no hard and fast rules to determine the closeness

of the two curves. Depending on the problem at hand a sensible eye-estimate suffices in

most of the cases. The difference between the values of N given by Weyl’s expression at

consecutive energies are defined as the new variable s. The procedure of obtaining the

values for s is called unfolding. Since the Weyl’s expression is a smooth version of the

staircase function, and the staircase function changes by one on an average (assuming
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Fig. 8.4: Unfolding of the spectra[59]. The staircase function is obtained by direct calculation
of the eigenvalues using a suitable numerical technique like the expansion method(EM).
The smooth curve (the dotted line) is obtained from Weyl’s formula. En are the discrete
energy values and N(En) are the corresponding points on the Weyl curve. The variable s is
defined as the differences in the consecutive N(En)’s. The Energy momentum relationship
for this problem is quadratic.

there are not too many degeneracies) between two consecutive energies, the variable s

should have an average value of 1. It’s the statistics of s that one is interested in. As

mentioned before the probability density function of s has a universal behavior.

8.8 Results for the semi-Dirac dispersion

A quantum billiards problem is considered where the confined electron obeys the semi-

Dirac dispersion. The geometry chosen for this problem is a circular one. The interest in a

circularly symmetric boundary results from the fact that the semi-Dirac dispersion, itself

lacking in the circular symmetry, may produce interesting energy level statistics even when
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the boundary is a symmetric one. It is a known fact that the energy level statistics changes

from one universality type to another with the change of the shape of the boundary as

has been shown in Fig.8.2. But with a given boundary-shape it is of one type for the

parabolic as well as the Dirac dispersions. On the contrary, results with a large range of

variability follow for the quantum billiards problem with the semi-Dirac dispersion even

when the shape of the boundary remains fixed. The Expansion method is employed to find

the eigenvalues of the Hamiltonian for this problem. The Hamiltonian for this problem is

different from that given by Eq. 8.3, and is given by

[Ĥ ≡ (

√
h̄4

4m2

∂4

∂x4
1

− h̄2v2
∂2

∂x2
2

+ V (r))]Ψ = EΨ. (8.17)

Assuming that the radius of the circle is a, each side of the enclosing square will also be a.

The basis functions are the same as given by Eq. 8.5, with a1 = a2. Hence the equation

corresponding to Eq. 8.8 becomes

Hn1,n2,m1,m2 =
π2h̄2

2ma2

√
m4

1 + α2m2
2δn1,n2δm1,m2 + V0vn1,n2,m1,m2 , (8.18)

where

α =
2mva

h̄π
, (8.19)

and vn1,n2,m1,m2 is given by the following integral

vn1,n2,m1,m2 = (

√
2
a
)4

∫ ∫

II
d2r sin(

n1πx1

a
) sin(

m1πx2

a
) sin(

n2πx1

a
) sin(

m2πx2

a
). (8.20)

α as given by Eq. 8.19 is a dimensionless quantity, since the numerator being proportional

to the product of a momentum scale (mv) and a length scale (a) has the same dimension

as h̄, which is present in the denominator. It can also be shown that α is the ratio of

the two energy scales, one, the natural energy scale of the semi-Dirac dispersion 2mv2,
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and the other the energy scale h̄2π2

2ma2 naturally appearing in the circular quantum billiards

problem. To carry out the double integral given by Eq. 8.20 the variables x′1 ≡ 2x1
a and

2
'

1

'

2
1 xx −−=

'

2
x

2
'

1

'

2
1 xx −=

'

1
x

1− 1

Enclosing square

1−

1

Fig. 8.5: Circular boundary enclosed by a square. The potential is zero inside the circle and non-
zero in the region bounded by the arc of the circle and the sides of the square.

x′2 ≡ 2x2
a are introduced[x1 and x2 are normalized by the radius of the circle]. The double

integral appearing in Eq. 8.20 is done over the region between the circular arc and the

sides of the square. Fig. 8.5 shows the limits that one needs to use in order to evaluate

the double integral as iterated single integrals. Also, the eigenfunctions given by Eq. 8.5

are written w.r.t the origin at the lower left corner of the enclosing square. Shifting the

origin at the center of the square and making use of the above mentioned new variables
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Eq. 8.20 can be written as follows

vn1,n2,m1,m2 =
∫ x′=1

x′=−1
dx′1

∫ x′2=1

x′2=−1
dx′2 (8.21)

sin(
n1π

2
x′1 +

n1π

2
) sin(

m1π

2
x′2 +

m1π

2
) sin(

n2π

2
x′1 +

n2π

2
) sin(

m2π

2
x′2 +

m2π

2
)

−
∫ x′=1

x′=−1
dx′1

∫ x′2=
√

1−x′1
2

x′2=−
√

1−x′1
2
dx′2

sin(
n1π

2
x′1 +

n1π

2
) sin(

m1π

2
x′2 +

m1π

2
) sin(

n2π

2
x′1 +

n2π

2
) sin(

m2π

2
x′2 +

m2π

2
).

The above equation is written in terms of the difference of two double integrals: one

over the entire square, the other over the circular region. A code is written in Java in

order to evaluate the double integrals in Eq. 8.21. Java uses the efficient Legender-Gauss

technique to carry out the integrations. The Java program is called from within the Matlab

environment for diagonalizing the Hamiltonian matrix in Eq. 8.18. If each of the integers

n1, n2,m1, m2 goes from 1 to L, the matrix will be L× L× L× L, which can be wrapped

into a L2 × L2 one, with its number of eigenvalues being L2. For example when L = 20

is chosen, the number of eigenvalues is 400. Next the process of unfolding is carried out

to obtain various values for the variable s. In this problem there are two parameters: α

and a. Once the energy levels are expressed in the unit of the energy scale π2h̄2

2ma2 , α is the

only free parameter in the problem. In the following it is described how the statistics of

the s variable changes with the variation of α. This is an unique feature of the semi-Dirac

dispersion. In Dirac and parabolic dispersions the energy level statistics is unique for a

given shape of the boundary of the billiard. As it is explored in the following, the statistics

for s does not stay the same and hence is not unique as the semi-Dirac parameter space is

scanned.

8.8.1 The Statistics for s

One can compute the statistics of s by creating bins for a range of values of s, and

constructing a histogram. A histogram consists of bars whose heights are proportional
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to the frequencies corresponding to the bins of s. A histogram is an useful tool when

only one frequency distribution is visualized. For multiple distributions, histograms will

superimpose on each other rendering the visualization almost impossible. For the problem

at hand different distributions of s will be obtained for different values of α. Hence a way to

visualize them on the same graph is necessary. In the following a method is described which

makes that possible. s being a variable whose values are proportional to the difference of

the consecutive energy levels, it can assume only discrete values since the energy levels are

discrete. Centering each of the discrete values of s, a normalized Gaussian distribution of

a given width is constructed. For two values of s, the Gaussians centering each of them

will add up. When the two values of s are close to each other the net distribution will

be much more accentuated compared to if the values of s are far apart. This procedure

will create a net distribution whose profile matches that of a histogram, but is smoother

compared to it. Mathematically speaking let 1
σ
√

2π
e
−(s−si)

2

2σ2 be a Gaussian centered at si.

si, i = 1toN represent N values of s obtained by unfolding the spectrum of eigenvalues. s

represents the continuous variable of the Gaussian. Instead of plotting the histogram, the

following expression is plotted.

f =
1
N

N∑

i=1

1
σ
√

2π
e
−(s−si)

2

2σ2 (8.22)

The multiplicative factor 1
N at the beginning of the expression on the right hand side

ensures normalization. The widths of the Gaussians σ are chosen to be equal for all si’s.

There is some flexibility in choosing the exact value for σ. It should be chosen in a way

such that f in Eq. 8.22 appears to be smooth. For the calculation at hand, a value of

.2 is chosen for σ. f representing a line instead of a histogram, this procedure allows

one to plot different f ’s for different values of α on the same graph. Before showing the

plots it’s worth while to have a small discussion about α that the plots depend on. α,

given by Eq. 8.19, is a dimensionless quantity as mentioned before. α is proportional to

the constant mv relevant for the semi-Dirac dispersion. mv determines the eccentricity
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of the semi-Dirac dispersion; hence changing α amounts to changing the curvature of the

semi-Dirac Fermi surface. The following calculations are restricted to the small value of

the α. For this range of α it is shown that the statistics of the variable s displays a very

rich behavior. Unlike the parabolic or the Dirac dispersion, the energy level statistics does

not always stick to only one type of universality class for a given geometry. The system

goes in and out of the these two types sometimes with a very sensitive dependence on α. A

possible explanation for this type of behavior is also given at the conclusion. The complete

procedure of obtaining a statistics is described in the following for α = .5. This will be

the first of a series of plots on the energy level statistics of the semi-Dirac dispersion. The

purpose of these plots will be to show the rich diversity of the α parameter space. In

order to compute the eigen-energies, all the values less than a given energy need to be

accounted for. For α = .5 that is arbitrarily chosen as 35 in the units of h̄2

2ma2 . To make

sure that all the eigen energies less than that value have been considered the following

procedure is resorted to. Ignoring the potential energy and considering the kinetic energy

part in Eq. 8.18 only, it is noted in order to obtain all the energies below 35 one would have

needed to use (m1)max = 6, and (m2)max = 70 approximately. The reason is as follows. In

Eq. 8.18, the kinetic energy term(henceforth defined as KE) is given by (in the units of

h̄2

2ma2 )

KE =
√

m4
1 + α2m2

2δn1,n2δm1,m2 . (8.23)

The above expression attains the maximum value (KE)max for (m1)max =
√

(KE)max and

αm2 = (KE)max approximately. Because when KE = (KE)max, the maximum value of

one integer corresponds to the minimum value of the other integer. Strictly speaking, the

minimum value of a positive integer for the problem at hand is 1, since the 0 value would

make the wavefunction given by Eq. 8.5 to be zero identically, rendering the situation

unphysical. But since an estimate is what is sought after in the current situation 0 does

the job. It is also due to the approximate nature of the analysis that the potential energy
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is ignored to obtain an estimate. Setting (KE)max to 35, (m1)max =
√

(KE)max ≈ 6

and (m2)max = (α)−1(KE)max = 70. With these choices of the integers, all the entries

of the Hamiltonian matrix for α = .5 is computed and the eigenvalues are obtained by

diagonalizing the Hamiltonian. Unfolding is carried out next as shown in the following

figure. There are two vertical lines in Fig.8.6. The one on the right corresponds to the

E

N
(E

)

alpha=.5

Fig. 8.6: Integrated density of states by direct calculation and from Weyl’s formula

energy value equal to 35. The left vertical in Fig.8.6 corresponds to the value of the energy

up to which the Weyl’s curve follows the integrated density of states as obtained by direct

diagonalization of the Hamiltonian matrix rather closely. How ‘closely’ is subjective and

ascertained by eye-estimation. Also there has to be ‘enough’ number of energies below the

left vertical line. For all the calculations presented in the thesis it turns the number of

eigenvalues below the left vertical line is around 150. It is assumed the number is sufficient

to be able to bring out the necessary features of the statistics. A similar number of eigen-
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energies is used for calculations appearing in [59]. In Fig.8.7 the histogram as well as the

smooth distribution function of s given by Eq. 8.22 are displayed. They have similarity

with a Poisson’s distribution. In Fig. 8.7 the s axis starts from .5 instead of 0. That is due

s s

F
re

q
u

e
n

c
y

f

Fig. 8.7: Histogram as well as the smooth distribution for α = .5.

to the fact that when the constant frequency corresponding to the bin of a histogram near

s = 0 is replaced by sum of Gaussians, the latter will show an artificial dip near s = 0.

It has to do with the shape of a Gaussian function, going to zero for the extreme values

of the independent variable it is plotted against. This is also very much in spirit with a

histogram plot, in which the frequency corresponding to the first bin can be assigned to

any value of s belonging to that bin. Hence, as long as s is not too far away from s = 0,

beginning the plot slightly from the right of s = 0 is reasonable.

To show a distribution which is qualitatively at another extreme, α = .6 is chosen.

A calculation similar to the one mentioned above is carried out, which includes the right

choices of the integers (m1)max and (m2)max as well as that of V0. A comparison of the

computed integrated density of states with the Weyl’s formula is made to ascertain how
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many eigen-energies can be used. The histogram and the smooth distribution for α = .6

are shown in Fig.8.8. It is noted that the distribution for α = .6 is of a different nature

F
re

q
u

e
n

c
y

f

s s

Fig. 8.8: Histogram as well as the smooth distribution for α = .6

than that obtained for α = .5, which was closer to the exponential distribution. For α = .6,

the distribution turns out to be closer to the superposition of GOE type of distribution

which peaks at a value of s away from 0. It is a rather remarkable result since neither

in a parabolic nor in a Dirac quantum billiards does one see two different energy level

statistics for the same geometry. But that is possible to achieve in a semi-Dirac system by

tuning the parameter α. It is also noted that this qualitative difference in the behavior of

the energy level statistics takes place for rather a modest change(about 20 percent) in the

value of α. Later it will be shown that a much more dramatic transition is possible in the

rich parameter space of α.

To show that the above mentioned transition between the universality classes is not an

one-time event but takes place in other regions of the α parameter space too, in Fig.8.9 a

range of α between .8 to .9 is considered. It is observed in Fig.8.9 as α increases from .8
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Fig. 8.9: Smooth distribution curves in the range of α = .8 to α = .9

to .9 the distribution function turns from what is closer to a superposition of GOE’s type

of distribution with a hump at a non-zero value of s to an exponential distribution, with

a maximum close to s = 0. Also, it is appropriate to mention at this point that in order

to obtain a perfect statistics for the variable s one needs an infinite number of values of s.

Limiting the number of values of s to around 150 might cause some deviation, although

hopefully not very serious, of the distribution curve from its ideal shape.

Before showing an example of a much more dramatic transition in the α parameter

space, a result about the statistics of s is shown in which the distribution curves are

insensitive to the changes in the value of α. This result is very different compared to any

of the energy level statistics shown so far. In Fig.8.10 distribution curves are plotted for

the range of α = .70 to α = .7525. The results shown in this figure, although intuitive,

did not occur for the previously used ranges of the parameter α. It is intuitive since it is

very much in line with one’s expectation that the distributions should not change much

when the parameter α varies very little.
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Fig. 8.10: Smooth distribution curves in the range of α = .7525 to α = .7

As a final example, the distribution functions are plotted for the parameter range

α = .77 to α = .78 in Fig.8.11. The objective is to show a rather sensitive dependence of

the distributions on the parameter α. In Fig.8.11 the distributions make transition from

Poisson type at α = .77 to a phase in which they are beginning to look like superposition

of GOE’S type, as can be seen from the humps developing in the distributions for non-

zero values of s. The change takes place when α changes by .01, which is about one

percent only! It is pointed out although the change is fast in certain ranges of α, it is

not discontinuous. That implies that the eigenenergies change continuously with α, there

by ensuring the correctness of the results eliminating the possibility of any artifacts of

numerical algorithms used for the calculation being responsible for such a special result.

Various other regions of the parameter space have also been explored for the semi-Dirac

system. The trend in the distribution functions is transitory or monotonic depending on

which region in the parameter space one is investigating. As mentioned before, this is

rather a special type of behavior for the semi-Dirac system. In Dirac or parabolic systems
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Fig. 8.11: Smooth distribution curves in the range of α = .77 to α = .78

the transition from one type of distribution to another takes place as the geometrical

shape of the billiard is altered. In case of semi-Dirac dispersion, in spite of the fact

that the boundary of the billiard is a symmetric one, one sees not only different types of

distributions but sometimes the transition from the one to the other is extremely sensitive

to the value of α.

8.8.2 Discussion (Future Direction etc.)

In this chapter the quantum chaotic aspects of the semi-Dirac dispersion was discussed.

It was shown that the semi-Dirac single parameter space shows a rich behavior of energy

level repulsion or the lack of it depending on what region of α is considered. The root

cause for such behavior lies in the degeneracy of the eigenvalues of the Hamiltonian given

by Eq. 8.8. Depending on the value of the parameter α, the energy levels can show a

tendency to be close to each other or not. Of course any degeneracies in this problem are

accidental in nature. A few things are worth mentioning at this point. In this chapter for
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all the calculations the scalar form of the semi-Dirac Hamiltonian was considered. But one

could also work with a tight-binding description of the semi-Dirac Hamiltonian. One could

start with a finite size tight-binding semi-Dirac Hamiltonian with a circular boundary, and

compute the energy level statistics. It can also be of interest to see how the energy level

statistics get modified with the introduction of a magnetic field. For the quantum billiards

problem, the translational symmetry is broken. It can be of considerable interest to study

the energy level statistics for systems having translational symmetry. In that case the

discrete energy levels of the quantum billiards problem will be replaced by energy bands.

The energy level statistics of the energy bands can be studied[64] in the following way.

Once the electronic structure of a material is obtained, for each k-point in the Brillouin

zone there are multiple energy bands with different energy values. So a transition from

a billiard problem to a problem with translational symmetry results in more number of

energy values, which can be subjected to the statistical considerations, as shown in this

chapter. So as much as computing the energy level statistics from the tight-binding semi-

Dirac Hamiltonian, and studying the same in the presence of the magnetic field are possible

future directions, one can also study the energy level statistics directly from the electronic

structure of TiO2/V O2 or any other material, where semi-Dirac band structure has been

known to appear.
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APPENDIX



.1 The eigenvalues and eigenfunctions of a 2 by 2 real matrix

I. The eigenvalues and eigenfunctions of the matrix

τz + tan θτx (.24)

are given by:

eigenfunction:
(

cos(θ/2)
sin(θ/2)

)
, (.25a)

with the corresponding eigenvalue being: (cos θ)−1.

eigenfunction:
(

sin(θ/2)
− cos(θ/2)

)
, (.25b)

with the corresponding eigenvalue being: − (cos θ)−1.

II. For the matrix

−[τz − tan θτx], (.26)

eigenfunction:
(

sin(θ/2)
cos(θ/2)

)
, (.27a)

with the corresponding eigenvalue being: (cos θ)−1.

eigenfunction:
(

cos(θ/2)
− sin(θ/2)

)
, (.27b)

with the corresponding eigenvalue being: − (cos θ)−1.
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