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1 Preface

This paper is the outgrowth of lectures the author gave at the Chemistry Institute
of the University of São Paulo at São Carlos, Brazil, and at the VIII’th Summer School
on Electronic Structure of the Brazilian Physical Society. It is an attempt to introduce
density-functional theory (DFT) in a language accessible for students entering the field or
researchers from other fields. It is not meant to be a scholarly review of DFT, but rather an
informal guide to its conceptual basis and some recent developments and advances. The
Hohenberg-Kohn theorem and the Kohn-Sham equations are discussed in some detail,
including comparisons with the equations of Thomas-Fermi, Hartree-Fock, and Dyson.
Approximate density functionals, selected aspects of applications of DFT, and a variety
of extensions of standard DFT are also discussed, albeit in less detail. Throughout it
is attempted to provide a balanced treatment of aspects that are relevant for chemistry
and aspects relevant for physics, but with a strong bias towards conceptual foundations.
The paper is intended to be read before (or in parallel with) one of the many excellent
more technical reviews available in the literature. The author apologizes to all researchers
whose work has not received proper consideration. The limits of the author’s knowledge,
as well as the limits of the available space and the nature of the intended audience, have
from the outset prohibited any attempt at comprehensiveness.

2 What is density-functional theory?

Density-functional theory is one of the most popular and successful quantum me-
chanical approaches to matter. It is nowadays routinely applied for calculating, e.g., the
binding energy of molecules in chemistry and the band structure of solids in physics.
First applications relevant for fields traditionally considered more distant from quantum
mechanics, such as biology and mineralogy are beginning to appear. Superconductivity,
atoms in the focus of strong laser pulses, relativistic effects in heavy elements and in
atomic nuclei, classical liquids, and magnetic properties of alloys have all been studied
with DFT.

DFT owes this versatility to the generality of its fundamental concepts and the
flexibility one has in implementing them. In spite of this flexibility and generality, DFT
is based on quite a rigid conceptual framework. This and the next section introduce some
aspects of this framework in general terms. The following two sections, 4 and 5, then deal
in detail with two core elements of DFT, the Hohenberg-Kohn theorem and the Kohn-
Sham equations. The final two sections, 6 and 7, contain a (necessarily less detailed)
description of approximations typically made in practical DFT calculations, and of some
extensions and generalizations of DFT.

To get a first idea of what density-functional theory is about, it is useful to take
a step back and recall some elementary quantum mechanics. In quantum mechanics we
learn that all information we can possibly have about a given system is contained in
the system’s wave function, Ψ. Here we will exclusively be concerned with the electronic
structure of atoms, molecules, and solids. The nuclear degrees of freedom (e.g., the crystal



lattice in a solid) appear only in the form of a potential v(r) acting on the electrons, so
that the wave function depends only on the electronic coordinates.1 Nonrelativistically,
this wave function is calculated from Schrödinger’s equation, which for a single electron
moving in a potential v(r) reads

[

−
h̄2∇2

2m
+ v(r)

]

Ψ(r) = εΨ(r). (1)

If there is more than one electron (i.e., one has a many-body problem) Schrödinger’s
equation becomes





N
∑

i

(

−
h̄2∇2

i

2m
+ v(ri)

)

+
∑

i<j

U(ri, rj)



Ψ(r1, r2 . . . , rN) = EΨ(r1, r2 . . . , rN), (2)

where N is the number of electrons and U(ri, rj) is the electron-electron interaction. For
a Coulomb system (the only type of system we consider here) one has

Û =
∑

i<j

U(ri, rj) =
∑

i<j

q2

|ri − rj|
. (3)

Note that this is the same operator for any system of particles interacting via the Coulomb
interaction, just as the kinetic energy operator

T̂ = −
h̄2

2m

∑

i

∇2
i (4)

is the same for any nonrelativistic system. Whether our system is an atom, a molecule,
or a solid thus depends only on the potential v(ri). For an atom, e.g.,

V̂ =
∑

i

v(ri) = −
∑

i

Ze2

|ri −R|
, (5)

where Ze is the nuclear charge (e > 0) and R the nuclear position. For a molecule or a
solid one has

V̂ =
∑

i

v(ri) = −
∑

ik

Zke
2

|ri − Rk|
, (6)

where the sum on k extends over all nuclei in the system, each with charge Zke and po-
sition Rk. It is only the spatial arrangement of the Rk (together with the corresponding
boundary conditions) that distinguishes, fundamentally, a molecule from a solid.2 Sim-
ilarly, it is only through the term Û that the (essentially simple) single-body quantum
mechanics of Eq. (1) differs from the extremely complex many-body problem posed by
Eq. (2). These properties are built into DFT in a very fundamental way.

1This is the so-called Born-Oppenheimer approximation. We follow the usual custom of calling v(r)
a ‘potential’ although it is, strictly speaking, a potential energy.

2One sometimes says that T̂ and Û are ‘universal’, while V̂ is system-dependent, or ‘nonuniversal’.
We will come back to this terminology.



The usual quantum-mechanical approach to Schrödinger’s equation (SE) can be
summarized by the following sequence

v(r)
SE
=⇒ Ψ(r1, r2 . . . , rN)

〈Ψ|...|Ψ〉
=⇒ observables, (7)

i.e., one specifies the system by choosing v(r), plugs it into Schrödinger’s equation, solves
that equation for the wave function Ψ, and then calculates expectation values of observ-
ables with this wave function. One among the observables that are calculated in this way
is the particle density

n(r) = N
∫

d3r2

∫

d3r3 . . .
∫

d3rNΨ∗(r, r2 . . . , rN)Ψ(r, r2 . . . , rN). (8)

Many powerful methods for solving Schrödinger’s equation have been developed during
decades of struggling with the many-body problem. In physics, for example, one has dia-
gramatic perturbation theory (based on Feynman diagrams and Green’s functions), while
in chemistry one often uses configuration interaction (CI) methods, which are based on
systematic expansion in Slater determinants. A host of more special techniques also exists.
The problem with these methods is the great demand they place on one’s computational
resources: it is simply impossible to apply them efficiently to large and complex systems.
Nobody has ever calculated the chemical properties of a 100-atom molecule with full CI,
or the electronic structure of a real semiconductor using nothing but Green’s functions.

It is here where DFT provides a viable alternative, less accurate perhaps, but much
more versatile. DFT explicitly recognizes that nonrelativistic Coulomb systems differ
only by their potential v(r), and supplies a prescription for dealing with the universal
operators T̂ and Û once and for all.3 Furthermore, DFT provides a way to systematically
map the many-body problem, with Û , onto a single-body problem, without Û . All this
is done by promoting the particle density n(r) from just one among many observables to
the status of key variable, on which the calculation of all other observables can be based.
This approach forms the basis of the large majority of electronic-structure calculations
in physics and chemistry. Much of what we know about the electrical, magnetic, and
structural properties of materials has been calculated using DFT, and the extent to which
DFT has contributed to the science of molecules is reflected by the 1998 Nobel Prize in
Chemistry, which was awarded to Walter Kohn [1], the founding father of DFT, and John
Pople [2], who was instrumental in implementing DFT in computational chemistry.

The density-functional approach can be summarized by the sequence

n(r) =⇒ Ψ(r1, . . . , rN) =⇒ v(r), (9)

i.e., knowledge of n(r) implies knowledge of the wave function and the potential, and
hence of all other observables. Although this sequence describes the conceptual structure
of DFT, it does not really represent what is done in actual applications of it, which
typically proceed along rather different lines. In the following sections I try to explain
both the conceptual structure and some of the many possible shapes and disguises under
which this structure appears in applications.

3We will see that in practice this prescription can be implemented only approximately. Still, these
approximations retain a high degree of universality in the sense that they often work well for more than
one type of system.



The literature on DFT is large, and rich in excellent reviews and overviews. Some
representative examples of full reviews and systematic collections of research papers are
Refs. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The present overview of DFT is much
less detailed and advanced than these treatments. Introductions to DFT that are more
similar in spirit to the present one (but differ in emphasis and selection of topics) are the
contribution of Levy in Ref. [7], the one of Kurth and Perdew in Ref. [12], and Ref. [16]
by Makov and Argaman. My aim in the present text is to give a bird’s-eye view of
DFT in a language that should be accessible to an advanced undergraduate student who
has completed a first course in quantum mechanics, in either chemistry or physics. Many
interesting details, proofs of theorems, illustrative applications, and exciting developments
had to be left out, just as any discussion of issues that are specific to only certain subfields
of either physics or chemistry. All of this, and much more, can be found in the references
cited above, to which the present little text may perhaps serve as a prelude.

3 From wave functions to density functionals (via

Green’s functions and density matrices)

This section can be skipped on a first reading. It is not necessary for understanding
the following sections (except perhaps for its last paragraph, on functionals), but presents
a different point of view on what one does when one practices density-functional theory.

It is a fundamental postulate of quantum mechanics that the wave function contains
all possible information about the system. Normally, this is much more information that
one can handle: for a system with N = 100 particles the many-body wave function is
an extremely complicated function of 300 spatial and 100 spin4 variables that would be
impossible to manipulate algebraically or to extract any information from, even if it were
possible to calculate it in the first place. For this reason one searches for less compli-
cated objects to formulate one’s theory. Such objects should contain the experimentally
relevant information, such as energies, densities, etc, but do not need to contain explicit
information about the coordinates of every single particle. One such object is called the
Green’s function. In mathematics one usually defines the Green’s function of a linear
operator L via [z − L(z, r)]G(r, r; z) = δ(r − r′), where δ(r, r′) is Dirac’s delta function.
For a single free quantum particle one has, for example,

[

E +
h̄2∇2

2m

]

G(0)(r, r′;E) = δ(r− r′). (10)

Many applications of such single-particle Green’s functions are discussed in Ref. [17]. In
many-body physics one finds it necessary to introduce more complicated Green’s functions.
In an interacting system the single-particle Green’s function is modified by the presence
of the interaction between the particles. In time-independent situations it now satisfies

4To keep our notation simple we have suppressed spin indices in the preceeding section. We will
continue to do so here, and only put them back when discussing spin-density-functional theory, in Sec. 7.



the equation
[

E +
h̄2∇2

2m

]

G(r, r′;E) = δ(r − r′) +R[U(r, r′)], (11)

where R[U ] is a complicated term that depends explicitly on the interaction Û [17, 18].
From this Green’s function one can calculate the expectation value of any single-body
operator (such as the potential, the kinetic energy, the particle density, etc), but also
that of certain two-particle operators, such as the Hamiltonian in the presence of particle-
particle interactions.5

One way to obtain this Green’s function is via solution of what is called Dyson’s
equation,

G(r, r′; t, t′) = G(0)(r, r′; t, t′)

+
∫

d3x
∫

d3x′
∫

d3τ
∫

d3τ ′G(0)(r,x; t, τ)Σ(x, τ,x′, τ ′)G(x′, r′; τ ′, t′), (12)

where Σ is known as the irreducible self energy [17, 18] and G(0) is the Green’s function in
the absence of any interaction.6 This equation (which we will not attempt to solve here)
has a characteristic property that we will meet again when we study the (much simpler)
Kohn-Sham and Hartree-Fock equations, in Sec. 5: the operator on the right-hand side,
which determines G on the left-hand side, depends on G itself. The mathematical problem
posed by this equation is thus nonlinear. We will return to such nonlinearity when we
discuss self-consistent solution of the Kohn-Sham equation. The quantity Σ will appear
again in Sec. 5.3 when we discuss the meaning of the eigenvalues of the Kohn-Sham
equation.

A proper discussion of Σ, G, and R requires a formalism known as second quanti-
zation [17, 18], and is beyond the scope of the present overview. One important limiting
case, however, can be discussed easily. This is the single-particle density matrix, which
can be defined by

γ(r, r′) = −ih̄ lim
t′→t

G(r, r′, t− t′). (13)

An equivalent, and more immediately useful, definition is

γ(r, r′) = N
∫

d3r2d
3r3 . . .Ψ

∗(r, r2, r3, . . . rN)Ψ(r′, r2, r3, . . . rN). (14)

The structure of this expression is quite simple: all coordinates that γ does not depend
upon are set equal in Ψ and Ψ∗, and integrated over. The usefulness of this definition
becomes apparent when we consider how one would calculate the expectation values of a
multiplicative single-particle operator Â =

∑N
i a(ri) (such as the potential V̂ =

∑N
i v(ri)),

〈A〉 =
∫

d3r1 . . .
∫

d3rN Ψ∗(r1, r2, . . . rN)

[

N
∑

i

a(ri)

]

Ψ(r1, r2, . . . rN) (15)

= N
∫

d3r1 . . .
∫

d3rN Ψ∗(r1, r2, . . . rN)a(r1)Ψ(r1, r2, . . . rN) (16)

=
∫

d3r a(r)γ(r, r). (17)

5Note that expressions like ‘two-particle operator’ refer to the number of particles involved in the
definition of the operator (two in the case of an interaction, one for a potential energy, etc), not to the
total number of particles present in the system.

6By Fourier transformation with respect to t − t′ one passes from G(r, r′; t, t′) to G(r, r′; E).



The last equation implies that if one knows γ(r, r) one can calculate the expectation value
of any multiplicative single-particle operator in terms of it, regardless of the number of
particles present in the system. The simplification is enormous and density matrices are
very popular in, e.g., computational chemistry for precisely this reason. More details are
given in, e.g., Ref. [4]. Here we just point out that for nonmultiplicative operators (such
as the kinetic energy, which contains a derivative) one requires the full single-particle
matrix γ(r, r′) and not only γ(r, r).

On the other hand, one does not know how to calculate expectation values of two-
particle operators, such as the interaction itself, or the full Hamiltonian (i.e., the total
energy), in terms of the density matrix γ(r, r′). For this purpose one requires a more
complicated function, called the two-particle density matrix. This situation is to be
contrasted with that of the single-particle Green’s function, for which one knows how to
calculate the expectation values of Û and Ĥ. Obviously some information has gotten lost
in passing from G to γ. This can also be seen very clearly from Eq. (13) or (14), which
show that information that is contained in G and Ψ, respectively, is erased (‘integrated
out’) in the definition of γ(r, r′).

Apparently even less information is contained in the particle density n(r), which is
obtained from the diagonal element of γ(r, r′)

n(r) = γ(r, r) = γ(r, r′)|r′→r. (18)

(This follows either from substituting the density operator n̂(r) =
∑N

i δ(r − ri) into
Eq. (17) or from comparing (8) with (14).) The particle density is an even simpler
function than γ(r, r′): it depends on one coordinate only, it can easily be visualized
as a three-dimensional charge distribution, and it is directly accessible in experiments.
These advantages, however, seem to be more than compensated by the fact that one has
integrated out an enormous amount of specific information about the system in going from
wave functions to Green’s functions, and on to density matrices and finally the density
itself.

The great surprise of density-functional theory is that in fact no information has
been lost at all, at least as long as one considers the system only in its ground state: one
can prove that the ground-state density n0(r) completely determines the ground-state
wave function Ψ0(r1, r2, r3, . . . rN). Hence, in the ground state, a function of one variable
is equivalent to a function of N variables! This property, which constitutes the celebrated
Hohenberg-Kohn theorem and is discussed in more detail in the next section, shows that
we have only integrated out explicit information on our way from wave functions via
Green’s functions and density matrices to densities. Implicitly all the information that
was contained in the ground-state wave function is still contained in the ground-state
density. Part of the art of practical DFT is how to get this implicit information out, once
one has obtained the density!

Before we discuss these issues more carefully, let us introduce a useful mathematical
tool. Since the wave function is determined by the density, we can write it as Ψ0 =
Ψ[n0](r1, r2, . . . rN), which indicates that Ψ0 is a function of its N spatial variables, but
a functional of n0(r). More generally, a functional F [n] can be defined (in an admittedly
mathematically sloppy way) as a rule for going from a function to a number, just as a
function y = f(x) is a rule (f) for going from a number (x) to a number (y). A simple



example of a functional is the particle number,

N =
∫

d3r n(r) = N [n], (19)

which is a rule for obtaining the number N , given the function n(r). Note that the name
given to the argument of n is completely irrelevant, since the functional depends on the
function itself, not on its variable. Hence we do not need to distinuish F [n(r)] from, e.g.,
F [n(r′)]. Another important case is that in which the functional depends on a parameter,
such as in

vH [n](r) = q2
∫

d3r′
n(r′)

|r − r′|
, (20)

which is a rule that for any value of the parameter r associates a value vH [n](r) with
the function n(r′). This term is the so-called Hartree potential, which we will repeatedly
encounter below.

4 DFT as a many-body theory: The Hohenberg-Kohn

theorem

At the heart of DFT is the Hohenberg-Kohn (HK) theorem. This theorem states that
for ground states Eq. (8) can be inverted: given a ground-state density n0(r) it is possible,
in principle, to calculate the corresponding ground-state wave function Ψ0(r1, r2 . . . , rN).
This means that Ψ0 is a functional of n0. (Consequently, all ground-state observables are
functionals of n0, too.) If Ψ0 can be calculated from n0 and vice versa, both functions are
equivalent and contain exactly the same information. At first sight this seems impossible:
how can a function of one (vectorial) variable r be equivalent to a function of N (vectorial)
variables r1 . . . rN? How can one arbitrary variable contain the same information as N
arbitrary variables?

The crucial fact which makes this possible is that knowledge of n0(r) implies implicit
knowledge of much more than that of an arbitrary function n(r). Knowledge that a given
function is a ground-state density implies knowledge of an extremely detailed subsidiary
condition: this function represents the spatial distribution of probability for the lowest

energy solution to an N -particle second-order differential equation: Schrödinger’s equa-
tion. It is not yet obvious, of course, that this particular auxiliar condition is enough
to determine Ψ0(r, r2 . . . , rN) uniquely from n0(r), but it is clear where the additional
information that makes the construction possible in principle comes from: it is hidden in
the subscript 0, implying that this n0 is not any arbitrary function but a very special one.

To prove mathematically that this is indeed true is not very complicated. In fact,
it is a bit surprising that it took 38 years from Schrödinger’s first paper on quantum
mechanics [19] to Hohenberg and Kohn’s paper containing their famous theorem [20]. The
mathematical details of the proof can be found in the original paper [20] or in standard
textbooks [3, 4] and need not be reproduced here. However, it may be useful to point out
that there is more than one proof available in the literature. First, there is the original
HK proof by contradiction. Second, there is the very elegant and powerful proof by



constrained search, given independently by M. Levy [21] and E. Lieb [22]. These proofs
can be found in any book on the subject, and we refrain from repetition of the treatments
given there.

Furthermore, there are two arguments, perhaps less well known than the two classical
proofs just mentioned, which lend additional credibility to the theorem. One of these is
based on a clever perturbation theoretic argument, due to M. Gillan. It can be found in
section 10.10 of Ref. [23]. The other is valid only for Coulomb potentials. It is based on
Kato’s theorem, which states [24, 25] that for such potentials the electron density has a
cusp at the position of the nuclei, where it satisfies

Zk = −
a0

2n(r)

dn(r)

dr

∣

∣

∣

∣

∣

r→Rk

. (21)

Here Rk denotes the positions of the nuclei, Zk their atomic number, and a0 is the
Bohr radius. For a Coulomb system one can thus, in principle, read off all information
necessary for completely specifying the Hamiltonian directly from examining the density
distribution: the integral over n(r) yields N , the total particle number; the position of
the cusps of n(r) are the positions of the nuclei, Rk; and the derivative of n(r) at these
positions yields Zk by means of Eq. (21). This is all one needs to specify the complete
Hamiltonian of Eq. (2) (and thus implicitly all its eigenstates). In practice one almost
never knows the density distribution sufficiently well to implement the search for the cusps
and calculate the local derivatives. Still, Kato’s theorem provides a vivid illustration of
how the density can indeed contain sufficient information to completely specify a nontrivial
Hamiltonian.7

For future reference we now provide a commented summary of the content of the
HK theorem. This summary consists of four statements:

(1) The ground-state (GS) wave function is a unique functional of the GS density:
Ψ0 = Ψ[n0]. This is the essence of the HK theorem. As a consequence, the GS expectation
value of any observable Ô is a functional of n0(r), too:

O0 = O[n0] = 〈Ψ[n0]|Ô|Ψ[n0]〉. (22)

(2) Perhaps the most important observable is the GS energy. This energy

Ev,0 = Ev[n0] = 〈Ψ[n0]|Ĥ|Ψ[n0]〉, (23)

where Ĥ = T̂ + Û + V̂ , has a useful variational property:

Ev[n0] ≤ Ev[n
′], (24)

where n0 is GS density in potential V̂ and n′ is some other density. This is very similar
to the usual variational principle for wave functions. If I calculate the expectation value
of a Hamiltonian with a trial wave function Ψ′ that is not its GS wave function Ψ0 I can
never obtain an energy below the true GS energy,

Ev,0 = Ev[Ψ0] = 〈Ψ0|Ĥ|Ψ0〉 ≤ 〈Ψ′|Ĥ|Ψ′〉 = Ev[Ψ
′]. (25)

7Note that, unlike the full Hohenberg-Kohn theorem, Kato’s theorem does apply only to superpositions
of Coulomb potentials, and can therefore not be applied directly to the effective Kohn-Sham potential.



Similarly, in DFT, if I calculate the GS energy of a Hamiltonian using a density that is not
its GS density I can never find a result below the true GS energy. This is what Eq. (24)
says, and it is so important for practical applications of DFT that it is sometimes called
the second Hohenberg-Kohn theorem (Eq. (22) is the first one, then).

(3) Recalling that the kinetic and interaction energies of a nonrelativistic Coulomb
system are described by universal operators, we can also write Ev as

Ev[n] = T [n] + U [n] + V [n], (26)

where T [n] and U [n] are universal functionals [defined as expectation values of the type
(22) of T̂ and Û ], independent of v(r). On the other hand,

V [n] =
∫

d3r n(r)v(r) (27)

is obviously nonuniversal (it depends on v(r), i.e., on the system under study), but ex-
tremely simple: once the system is specified, i.e., v(r) is known, the functional V [n] is
known explicitly.

(4) There is a fourth substatement to the HK theorem. This statement is that the
GS density does determine not only the GS wave function Ψ0, but also the potential v(r):

v(r) = v[n0](r). (28)

As a consequence the explicit reference to the potential in the previous equations is not
necessary, and one can rewrite, e.g. Eq. (23) as

E0 = E[n0] = 〈Ψ[n0]|T̂ + Û + V̂ [n0]|Ψ[n0]〉. (29)

Another consequence is that n0 now does determine not only the GS wave function but
the complete Hamiltonian (T̂ and Û are fixed), and thus all excited states, too:

Ψk(r1, r2 . . . , rN) = Ψk[n0], (30)

where k labels the entire spectrum of the many-body Hamiltonian Ĥ.
Originally this fourth statement was considered to be as sound as the other three.

However, it has become clear very recently, as a consequence of work of the author with
G. Vignale [26, 27] and, independently, of H. Eschrig and W. Pickett [28], that there
are significant exceptions to it. In fact, the fourth substatement holds only when one
formulates DFT exclusively in terms of the charge density, as we have done up to this
point. It does not hold when one works with spin densities (spin-DFT) or current densities
(current-DFT).8 In these (and some other) cases the densities still determine the wave
function, but they do not uniquely determine the corresponding potentials. This so-called
nonuniqueness problem has been discovered only recently, and its consequences are now
beginning to be explored [26, 27, 28, 29]. It is clear, however, that the fourth substatement
is, from a practical point of view, the least important of the four, and most applications
of DFT do not have to be reconsidered as a consequence of its eventual failure. (But some
do: see Refs. [26, 27] for examples.)

8In Section 7 we will briefly discuss these formulations of DFT.



Another conceptual problem with the HK theorem, much better known and more
studied than nonuniqueness, is representability. To understand what representability is
about, consider the following two questions: (i) How do I know, given an arbitrary function
n(r), that this function can be represented in the form (8), i.e., that it is a density arising
from an antisymmetric N -body wave function Ψ(r1 . . . rN)? (ii) How do I know, given a
function that can be written in the form (8), that this density is a ground-state density
of a local potential v(r)? The first of these questions is known as the N-representability
problem, the second is called v-representability. Note that these are quite important
questions: if one should find for example, in a numerical calculation, a minimum of Ev[n]
that is not N-representable, then this mimimum is not the physically acceptable solution
to the problem at hand. Luckily, the N-representability problem of the single-particle
density has been solved: any square-integrable nonnegative function can be written in the
form (8). The v-representability problem does not have a similarly simple solution, but
one can use the constrained search algorithm of Levy and Lieb to show that it is irrelevant
for the proof of the HK theorem [3, 4].

After these abstract considerations let us now consider one way in which one can
make practical use of DFT. Assume we have specified our system (i.e., v(r) is known).
Assume further that we have reliable approximations for U [n] and T [n]. All one has to
do then is to minimize

Ev[n] = T [n] + U [n] +
∫

d3r n(r)v(r) (31)

with respect to n(r). The minimizing function n0(r) is the system’s GS charge density and
the value Ev,0 = Ev[n0] is the GS energy. Assume now that v(r) depends on a parameter
a. This can be, for example, the lattice constant in a solid or the angle between two atoms
in a molecule. Calculation of Ev,0 for many values of a allows one to plot the curve Ev,0(a)
and to find the value of a that mimimizes it. This value, a0, is the GS lattice constant or
angle. In this way one can calculate quantities like molecular geometries and sizes, lattice
constants, unit cell volumes, charge distributions, total energies, etc. By looking at the
change of Ev,0(a) with a one can, moreover, calculate compressibilities and bulk moduli
(in solids) and vibrational frequencies (in molecules). By comparing the total energy of a
composite system (e.g., a molecule) with that of its constituent systems (e.g., individual
atoms) one obtains dissociation energies. By calculating the total energy for systems
with one electron more or less one obtains electron affinities and ionization energies. All
this follows from DFT without having to solve the many-body Schrödinger equation and
without having to make a single-body approximation.

In theory it should be possible to calculate all observables, since the HK theorem
guarantees that they are all functionals of n0(r). In practice, one does not know how to do
this explicitly. Another problem is that the minimization of Ev[n] is, in general, a tough
numerical problem on its own. And, moreover, one needs reliable approximations for T [n]
and U [n] to begin with. In the next section, on the Kohn-Sham equations, we will see
one widely used method for solving these problems. Before looking at that, however, it is
worthwhile to recall an older, but still occasionally useful, alternative: the Thomas-Fermi
approximation.



In this approximation one sets

U [n] ≈ UH [n] =
q2

2

∫

d3r
∫

d3r′
n(r)n(r′)

|r − r′|
, (32)

i.e., approximates the full interaction energy by the Hartree energy, the classical electro-
static interaction energy. One further sets, initially,

T [n] ≈ TLDA[n] =
∫

d3r thom(n(r)), (33)

where thom(n) is the kinetic energy density of a homogeneous system with (constant)
density n. This formula is a first example of a local-density approximation (LDA). In
this type of approximation one imagines the real inhomogeneous system (with density
n(r) in potential v(r)) to be decomposed in small cells in each of which n(r) and v(r) are
approximately constant. In each cell (i.e., locally) one can then use the expression of a
homogeneous system to approximate the contribution of the cell to the real inhomogeneous
one. Making the cells infinitesimally small and summing over all of them yields Eq. (33).
For a noninteracting system (specified by subscript s, for ‘single-particle’) the function
thom
s (n) is known explicitly, thom

s (n) = 3h̄2(3π2)2/3n5/3/(10m). This is exploited to further
approximate

T [n] ≈ TLDA[n] ≈ TLDA
s [n] =

∫

d3r thom
s (n(r)). (34)

The Thomas-Fermi approximation then consists in setting

E[n] = T [n] + U [n] + V [n] ≈ ETF [n] = TLDA
s [n] + UH [n] + V [n]. (35)

This expression is the starting point for a large body of literature in chemistry and physics
[10, 25]. More recent approximations for T [n] can be found, e.g., in Refs. [30, 31].

5 DFT as an effective single-body theory: The Kohn-

Sham equations

Density-functional theory can be implemented in many ways. The minimization of
an explicit energy functional, discussed up to this point, is not normally the most efficient
among them. Much more widely used is the Kohn-Sham approach. Interestingly, this
approach owes its success and popularity partly to the fact that it does not exclusively
work in terms of the particle (or charge) density, but brings a special kind of wave functions
(single-particle orbitals) back into the game. We will now see in some detail how this is
done.

5.1 Exchange-correlation energy

The Thomas-Fermi approximation (34) for T [n] is not very good. A more accurate scheme
for treating the kinetic energy functional is based on decomposing T [n] into one part



that represents the kinetic energy of noninteracting particles, i.e., Ts[n], and one that
represents the remainder, denoted Tc[n] (the subscripts s and c stand for ‘single-particle’
and ‘correlation’, respectively9),

T [n] = Ts[n] + Tc[n]. (36)

Ts[n] is not known exactly as a functional of n [and using the LDA to approximate it leads
one back to the Thomas-Fermi approximation (34)], but it is easily expressed in terms of
the single-particle orbitals φi(r) of a noninteracting system with density n, as

Ts[n] = −
h̄2

2m

N
∑

i

∫

d3r φ∗
i (r)∇

2φi(r), (37)

because for noninteracting particles the total kinetic energy is just the sum of the indi-
vidual kinetic energies. Since all φi(r) are functionals of n, this expression for Ts is an
explicit orbital functional but an implicit density functional, Ts[n] = Ts[{φi[n]}], where
the notation indicates that Ts depends on the full set of occupied orbitals φi, each of
which is a functional of n. Other such orbital functionals will be discussed in Sec. 6.

We now rewrite the exact energy functional as

E[n] = T [n] + U [n] + V [n] = Ts[{φi[n]}] + UH [n] + Exc[n] + V [n], (38)

where by definition Exc contains the differences T − Ts (i.e. Tc) and U − UH . Eq. (38)
is formally exact, but of course Exc is unknown — although the HK theorem guarantees
that it is a density functional. This functional, Exc[n], is called the exchange-correlation

(xc) energy. It is often decomposed as Exc = Ex + Ec, where Ex is due to the Pauli
principle (exchange energy) and Ec is due to correlations. (Tc is then a part of Ec.) The
exchange energy can be written explicitly in terms of the single-particle orbitals as10

Ex[{φi[n]}] = −
q2

2

∑

jk

∫

d3r
∫

d3r′
φ∗

j(r)φ
∗
k(r

′)φj(r
′)φk(r)

|r− r′|
, (39)

but no exact expression in terms of the density is known.
A simple way to understand the origin of correlation is to consider the operator for

the Coulomb interaction

Û =
q2

2

∫

d3r
∫

d3r′
n̂(r)n̂(r′) − n̂(r)δ(r− r′)

|r− r′|
, (40)

where n̂ is the density operator and the term with the delta function subtracts out the
interaction of a charge with itself. The expectation value of this operator, U = 〈Ψ|Û |Ψ〉,
involves the expectation value of a product of density operators. In the Hartree term
(32), on the other hand, this expectation value of a product is replaced by a product
of expectation values of the form n = 〈Ψ|n̂|Ψ〉. This replacement neglects quantum

9One can prove that there is no exchange contribution to T , i.e., Tx ≡ 0.
10This differs from the exchange energy used in Hartree-Fock theory only in the substitution of Hartree-

Fock orbitals φHF

i
(r) by Kohn-Sham orbitals φi(r). Some consequences of this substitution are explored

in Ref. [32].



fluctuations11 about the expectation values: by writing n̂ = n+ δn̂fluc and substituting in
the previous equation we see that the difference between the true operator and the Hartree
energy is entirely due to the fluctuations δn̂fluc and the self-interaction correction. The
exchange-correlation functional introduced in Eq. (38) thus corrects the Hartree term
by including the self-interaction correction and the above quantum fluctuations, and the
noninteracting kinetic energy by including Tc. The fluctuations are not entirely free, since
the Pauli principle prohibits that two particles with the same spin come arbitrarily close.
The influence of this constraint on the total energy is described by the exchange energy
Ex, while the remainder is called the correlation energy Ec.

Clearly Ec is an enormously complex object, and DFT would be of little use if one
had to know it exactly for making calculations. The practical advantage of writing E[n] in
the form Eq. (38) is that the unknown functional Exc[n] is typically much smaller than the
known terms Ts, UH and V . One can thus hope that reasonably simple approximations
for Exc[n] provide useful results for E[n]. Some successful approximations are discussed
in Sec. 6. Two properties of the exchange, Ex[n], and correlation, Ec[n], contributions to
this functional are the scaling conditions first obtained by Levy and Perdew [34]

Ex[nλ] = λEx[n] (41)

Ec[nλ] > λEc[n] forλ > 1 (42)

Ec[nλ] < λEc[n] forλ < 1, (43)

where nλ(r) = λ3n(λr) is a scaled density. These properties serve as constraints in the
construction of approximations for the functionals Ex[n] and Ec[n]. Many other similar
properties are known. A useful overview is the contribution of M. Levy in Ref. [15].

5.2 Kohn-Sham equations

Since Ts is now written as an orbital functional one cannot directly minimize Eq. (38)
with respect to n. Instead one commonly employs a scheme suggested by Kohn and
Sham [35], for performing the minimization indirectly. This scheme starts by writing the
minimization as

0 =
δE

δn
=
δTs

δn
+
δV

δn
+
δUH

δn
+
δExc

δn
=
δTs

δn
+ v(r) + vH(r) + vxc(r). (44)

As a consequence of Eq. (27), δV/δn = v(r), the ‘external’ potential the electrons move
in. The term δUH/δn simply yields the Hartree potential, introduced in Eq. (20). For the
term δExc/δn, which can only be calculated explicitly once an approximation for Exc has
been chosen, one commonly writes vxc.

Consider now a noninteracting system of particles moving in external potential vs(r).
For this system the minimization condition is simply

0 =
δE

δns
=
δTs

δns
+ vs(r), (45)

11At finite temperature there are also thermal fluctuations. To properly include these one must use a
finite-temperature formulation of DFT [33]. See also the contribution of B. L. Gyorffy et al. in Ref. [15]
for DFT treatment of fluctuations.



since there are no Hartree and xc terms in the absence of interactions. Comparing this with
the previous equation we find that both minimizations have the same solution ns(r) ≡ n(r)
if vs is chosen to be

vs(r) = v(r) + vH(r) + vxc(r). (46)

Consequently, one can calculate the density of the interacting (many-body) system in po-
tential v(r) by solving the equations of a noninteracting (single-body) system in potential
vs(r).

12 In particular, the Schrödinger equation of this auxiliary system,

[

−
h̄2∇2

2m
+ vs(r)

]

φi(r) = εiφi(r), (47)

yields orbitals that reproduce the density n(r) of the original system (these are the same
orbitals employed in Eq. (37)),

n(r) ≡ ns(r) =
N
∑

i

|φi(r)|
2. (48)

Eqs. (46) to (48) are the celebrated Kohn-Sham (KS) equations. They replace the problem
of minimizing E[n] by that of solving a noninteracting Schrödinger equation. (Recall
that the minimization of E[n] originally replaced the problem of solving the many-body
Schrödinger equation!)

Since both vH and vxc depend on n, which depends on the φi, which in turn depend
on vs, the problem of solving the KS equations is a nonlinear one, just as is the one of
solving the (much more complicated) Dyson equation (12). The usual way of solving
such problems is to start with an initial guess for n(r), calculate the corresponding vs(r),
and then solve the differential equation (47) for the φi. From these one calculates a
new density, using (48), and starts again. The process is repeated until it converges.
(Only rarely this requires more than a few dozen iterations.) The technical name for this
procedure is ‘self-consistency cycle’.

Once one has a converged solution n0, one can calculate the total energy from
Eq. (38) or, equivalently and more conveniently, from

E0 =
N
∑

i

εi −
q2

2

∫

d3r
∫

d3r′
n0(r)n0(r

′)

|r − r′|
−
∫

d3r vxc(r)n0(r) + Exc[n0]. (49)

This equation shows that E0 is not simply the sum of all εi. In fact, it should be clear
from our derivation of Eq. (47) that the εi are completely artificial objects: they are
the eigenvalues of an auxiliary single-body Schrödinger equation whose eigenfunctions
(orbitals) yield the correct density. It is only this density that has strict physical meaning
in the KS equations. The KS eigenvalues, on the other hand, bear only a semiquantitative
resemblance with the true energy spectrum [36], but are not to be trusted quantitatively.

The only exception to this rule is the highest occupied KS eigenvalue. Denoting
by εN (M) the N ’th eigenvalue of a system with M electrons, one can show rigorously

12The question whether such a potential vs(r) always exists in the mathematical sense, is called the
noninteracting v-representability problem. This problem is unsolved, but only very rarely relevant for
practical applications.



that εN(N) = −I, the negative of the first ionization energy of the N -body system, and
εN+1(N + 1) = −A, the negative of the electron affinity of the same N -body system.
These relations hold for the exact functional only. When calculated with an approximate
functional of the LDA or GGA type, the highest eigenvalues usually do not provide good
approximations to the experimental I and A. Better results for these observables are
obtained by calculating them as total-energy differences, according to I = E0(N − 1) −
E0(N) and A = E0(N) − E0(N + 1), where E0(N) is the ground-state energy of the N -
body system. Alternatively, self-interaction corrections can be used to obtain improved
ionization energies and electron affinities from Kohn-Sham eigenvalues [37].

Given the auxiliary nature of the other Kohn-Sham eigenvalues, it comes as a great
(and welcome) surprise that in many situations (typically characterized by the presence of
fermionic quasiparticles and absence of strong correlations) the Kohn-Sham eigenvalues
εi do, empirically, provide a quite good approximation to the actual energy levels of
extended systems [38]. Moreover, it was found recently [39] that the energy gap between
the highest occupied KS eigenvalue and the lowest unoccupied one agrees quite well with
experimental values for the true energy gap, even for difficult cases such as transition-metal
oxides, provided the KS eigenvalues are calculated with the B3LYP hybrid functional (see
Sec. 6.2 for more on this functional.) Similarly, it has recently been argued that the
differences between exact KS eigenvalues (as opposed to approximate ones, obtained,
e.g., in the LDA) provide surprisingly good approximations for the excitation energies of
finite systems [40]. Much research remains to be done before it is clear to what extent
such conclusions can be generalized, and how situations in which the KS eigenvalues
approximate the true excitation spectrum are to be characterized microscopically.13

Most band-structure calculations in solid-state physics are actually calculations of
the KS eigenvalues εi. This simplification has proved enormously successful, but when
one uses it one must be aware of the fact that one is taking the auxiliary single-body
equation (47) literally as an approximation to the many-body Schrödinger equation. DFT,
practiced in this mode, is not a rigorous many-body theory anymore, but a mean-field
theory (albeit one with a very sophisticated mean field vs(r)).

5.3 Hartree, Hartree-Fock, and Dyson equations

A partial justification for the interpretation of the KS eigenvalues as an approximation
to quasi-particle energies can be given by comparing the KS equation with other self-
consistent equations of many-body physics. Among the simplest such equations are the
Hartree equation

[

−
h̄2∇2

2m
+ v(r) + vH(r)

]

φH
i (r) = εHi φ

H
i (r), (50)

and the Hartree-Fock (HF) equation

[

−
h̄2∇2

2m
+ v(r) + vH(r)

]

φHF
i (r) − q2

∫

d3r′
γ(r, r′)

|r− r′|
φHF

i (r′) = εHF
i φHF

i (r), (51)

13Several more rigorous approaches to excited states in DFT, which do not require the KS eigenvalues
to have physical meaning, are mentioned in Sec. 7.



where γ(r, r′) is the density matrix of Eq. (14). It is a fact known as Koopman’s theorem
[41] that the HF eigenvalues εHF

i can be interpreted as unrelaxed electron-removal energies
(i.e., ionization energies of the i’th electron, neglecting reorganization of the remaining
electrons after removal). As mentioned above, in DFT only the highest occupied eigen-
value corresponds to an ionization energy, but unlike in HF this energy includes relaxation
effects.

The KS equation (47) includes both exchange and correlation via the multiplica-
tive operator vxc. Both exchange and correlation are normally approximated in DFT,14

whereas HF accounts for exchange exactly, through the integral operator containing
γ(r, r′), but neglects correlation completely. In practise DFT results are typically at
least as good as HF ones and often comparable to much more sophisticated correlated
methods — and the KS equations are much easier to solve than the HF equations.15

All three single-particle equations, Hartree, Hartree-Fock, and Kohn-Sham can also
be interpreted as approximations to Dyson’s equation (12), which can be rewritten [18]
as

(

−
h̄2∇2

2m
+ v(r)

)

ψk(r) +
∫

d3r′ Σ(r, r′, Ek)ψk(r
′) = Ekψk(r), (52)

where Σ is the irreducible self energy introduced in Eq. (12). The Ek appearing in this
equation are the true (quasi-)electron addition and removal energies of the many-body
system. Needless to say, it is much more complicated to solve this equation than the HF
or KS equations. It is also much harder to find useful approximations for Σ than for vxc.

16

Obviously, the KS equation employs a local, energy-independent potential vs in place of
the nonlocal, energy-dependent operator Σ. Whenever this is a good approximation, the
εi are also a good approximation to the Ek.

The interpretation of the KS equation (47) as an approximation to Eq. (52) is
suggestive and useful, but certainly not necessary for DFT to work: if the KS equations
are only used to obtain the density, and all other observables, such as total energies, are
calculated from this density, then the KS equations in themselves are not an approximation
at all, but simply a very useful mathematical tool.

5.4 Basis functions

In practice, numerical solution of the KS differential equation (47) typically proceeds by
expanding the KS orbitals in a suitable set of basis functions and solving the resulting
secular equation for the coefficients in this expansion and/or for the eigenvalues for which
it has a solution.

In physics much is known about the construction of basis functions for solids due to
decades of experience with band-structure calculations. This includes many calculations
that predate the widespread use of DFT in physics. There is a fundamental dichotomy
between methods that work with fixed basis functions that do not depend on energy, and
methods that employ energy-dependent basis functions. Fixed basis functions are used

14A possibility to treat exchange exactly in DFT is offered by the OEP method discussed in Sec. 6.3.
15This is due to the integral operator in the HF equations.
16The so-called GW approximation [42, 43, 44] is one such approximation for Σ, but in actual imple-

mentations of it one usually takes DFT-KS results as an input.



e.g., in plane-wave expansions, tight-binding or LCAO (linear combination of atomic
orbitals) approximations, or the OPW (orthogonalized plane wave) method. Examples
for methods using energy-dependent functions are the APW (augmented plane wave) or
KKR (Korringa-Kohn-Rostoker) approaches. This distinction became less clear-cut with
the introduction of ‘linear methods’ [45], in which energy-dependent basis functions are
linearized (Taylor expanded) around some fixed reference energy. The most widely used
methods for solving the Kohn-Sham equation in solid-state physics, LMTO (linear muffin
tin orbitals) and LAPW (linear augmented plane waves), are of this latter type.

The situation is quite similar in chemistry. Due to decades of experience with
Hartree-Fock and CI calculations much is known about the construction of basis functions
that are suitable for molecules. Almost all of this continues to hold in DFT — a fact
that has greatly contributed to the recent popularity of DFT in chemistry. Chemical
basis functions are classified with respect to their behaviour as a function of the radial
coordinate into Slater type orbitals (STOs), which decay exponentially far from the origin,
and Gaussian type orbitals (GTOs), which have a gaussian behaviour. STOs more closely
resemble the true behaviour of atomic wave functions [in particular the cusp condition
of Eq. (21)], but GTOs are easier to handle numerically. The so-called ‘contracted basis
functions’, in which STO basis functions are reexpanded in a small number of GTOs,
represent a compromise between the accuracy of STOs and the convenience of GTOs.
The most common methods for solving the Kohn-Sham equations in quantum chemistry
are of this type [2, 41]. More details on the development of suitable basis functions can
be found, e.g., in Ref. [41].

6 Making DFT practical: Approximations

There are basically three distinct types of approximations involved in a DFT calcu-
lation. One is conceptual, and concerns the interpretation of KS eigenvalues and orbitals
as physical energies and wave functions. This approximation is optional — if one does
not want to make it one simply does not attach meaning to the eigenvalues of Eq. (47).
The pros and cons of this procedure were discussed in Secs. 5.2 and 5.3. The second
type of approximation is numerical, and concerns methods for actually solving the dif-
ferential equation (47). A main aspect here is the selection of suitable basis functions,
briefly discussed in Sec. 5.4. The third type of approximation involves constructing an
expression for the unknown xc functional Exc[n], which contains all many-body aspects
of the problem [cf. Eq. (38)]. It is with this type of approximation that we are concerned
in the present section.

This section is intended to give the reader an idea of what types of functionals
exist, and what their main features are. It does not deal with the actual construction
of these functionals. For this the reader is referred to the reviews [3]-[15] or to the
original papers cited below. Sticking to the bird’s-eye philosophy of this overview I have
also refrained from including numerical data on the performance of each functional —
extensive comparisons of a wide variety of functionals can be found in Refs. [3]-[15] and
in the original literature cited below.



6.1 Local functionals: LDA

Historically (and in many applications also practically) the most important type of ap-
proximation is the local-density approximation (LDA). To understand the concept of an
LDA recall first how the noninteracting kinetic energy Ts[n] is treated in the Thomas-
Fermi approximation: In a homogeneous system one knowns that, per volume17

thom
s (n) =

3h̄2

10m
(3π2)2/3n5/3 (53)

where n = const. In an inhomogeneous system, with n = n(r), one approximates locally

ts(r) ≈ thom
s (n(r)) =

3h̄2

10m
(3π2)2/3n(r)5/3 (54)

and obtains the full kinetic energy by integration over all space

TLDA
s [n] =

∫

d3r thom
s (n(r)) =

3h̄2

10m
(3π2)2/3

∫

d3r n(r)5/3. (55)

For the kinetic energy the approximation Ts[n] ≈ TLDA
s [n] is much inferior to the exact

treatment of Ts in terms of orbitals, offered by the Kohn-Sham equations, but the LDA
concept turned out to be highly useful for another component of the total energy (38),
the exchange-correlation energy Exc[n]. For the exchange energy Ex[n] the procedure is
extremely simple, since one knows [3, 4]

ehom
x (n) = −

3q2

4

(

3

π

)1/3

n4/3, (56)

so that

ELDA
x [n] = −

3q2

4

(

3

π

)1/3 ∫

d3r n(r)4/3. (57)

This is the LDA for Ex.
18

For the correlation energy Ec[n] the situation is more complicated, since ehom
c (n)

is not known exactly: the determination of the correlation energy of a homogeneous
interacting electron system is already a difficult many-body problem on its own. Early
approximate expressions for ehom

c (n) were based on applying perturbation theory (e.g. the
random-phase approximation) to this problem [46, 47]. These approximations became
outdated with the advent of highly precise Quantum Monte Carlo (QMC) calculations
for the electron liquid, by Cerperley and Alder [48]. Modern expressions for ehom

c (n)
[49, 50, 51] are parametrizations of these data. These expressions are implemented in
most standard DFT program packages and in typical applications give almost identical
results. On the other hand, the earlier parametrizations of the LDA, based on perturbation
theory [46, 47], can deviate substantially from the QMC ones, and are better avoided.

17The change from a capital T to a lower-case t is commonly used to indicate quantities per volume.
18If one adds this term to the Thomas-Fermi expression (35) one obtains the so-called Thomas-Fermi-

Dirac approximation to E[n]. It one multiplies it with an adjustable parameter α one obtains the so-called
Xα approximation to Exc[n]. These approximations are not much used today.



Independently of the parametrization, the LDA for Exc[n] formally consists in

Exc[n] ≈ ELDA
xc [n] =

∫

d3r
[

ehom
x (n(r)) + ehom

c (n(r))
]

. (58)

This approximation for Exc[n] has proved amazingly successful, even when applied to
systems that are quite different from the electron liquid that forms the reference system
for the LDA. For many decades the LDA has been applied in, e.g., calculations of band
structures and total energies in solid-state physics. In quantum chemistry it is much less
popular, because it fails to provide results that are accurate enought to permit a quanti-
tative discussion of the chemical bond in molecules (so-called ‘chemical accuracy’ requires
calculations with an error of not more than about 1kcal/mole ≈ 0.0434eV/particle).

6.2 Semilocal functionals: GEA, GGA, and beyond

In the LDA one exploits knowledge of the density at point r. Any real system is spatially
inhomogeneous, i.e., it has a spatially varying density n(r), and it would clearly be useful
to also include information on the rate of this variation in the functional. A first attempt
at doing this were the so-called ‘gradient-expansion approximations’ (GEA). In this class
of approximation one tries to systematically calculate gradient-corrections of the form
|∇n(r)|, |∇n(r)|2, ∇2n(r), etc, to the LDA. A famous example is the lowest-order gradient
correction to the Thomas-Fermi approximation for Ts[n],

Ts[n] ≈ TW
s [n] = TLDA

s [n] +
h̄2

8m

∫

d3r
|∇n(r)|2

n(r)
. (59)

This second term on the right-hand side is called the Weizsäcker term.19 Similarly, in

Ex[n] ≈ EGEA(2)
x [n] = ELDA

x [n] −
10q2

432π(3π2)1/3

∫

d3r
|∇n(r)|2

n(r)4/3
(60)

the second term on the right-hand side is the lowest-order gradient correction to ELDA
x [n].

In practice, the inclusion of low-order gradient corrections almost never improves on the
LDA, and often even worsens it. Higher-order corrections (e.g., ∝ |∇n(r)|α or ∝ ∇βn(r)
with α, β > 2), on the other hand, are exceedingly difficult to calculate, and little is
known about them.

In this situation it was a major breakthrough when it was realized, in the early
eigthies, that instead of power-series-like systematic gradient expansions one could exper-
iment with more general functions of n(r) and ∇n(r), which need not proceed order by
order. Such functionals, of the general form

EGGA
xc [n] =

∫

d3r e(n(r),∇n(r)), (61)

have become known as generalized-gradient approximations (GGAs) [52].

19If one adds this term to the Thomas-Fermi expression (35) one obtains the so-called Thomas-Fermi-
Weizsäcker approximation to E[n]. In a systematic gradient expansion the 8 in the denominator is
replaced by a 72 [3, 4].



Different GGAs differ in the choice of the function e(n(r),∇n(r)). Note that this
makes different GGAs much more different from each other than the different parametriza-
tions of the LDA: essentially there is only one correct expression for ehom

xc (n), and the var-
ious parametrizations of the LDA [46, 47, 49, 50, 51] are merely different ways of writing
it. On the other hand, depending on the method of construction employed for obtaining
e(n(r),∇n(r)) one can obtain very different GGAs. In particular, GGAs used in chemistry
typically proceed by fitting parameters to test sets of selected molecules. On the other
hand, GGAs used in physics tend to emphasize exact constraints. Nowadays the most
popular (and most reliable) GGAs are PBE (denoting the functional proposed in 1996 by
Perdew, Burke, and Ernzerhof [53]) in physics, and BLYP (denoting the combination of
Becke’s 1988 exchange functional [54] with the 1988 correlation functional of Lee, Yang,
and Parr [55]) in chemistry. Many other GGA-type functionals are also available, and
new ones continue to appear.

Quite generally, current GGAs seem to give reliable results for all main types of
chemical bond (covalent, ionic and metallic). For van der Waals interactions, however,
most GGAs fail (PBE may be an exception [56]). To describe these very weak interactions
several more specialized approaches have been developed within DFT [57, 58, 59, 60]. Both
in physics and in chemistry the widespread use of GGAs has lead to major improvements
as compared to LDA. ‘Chemical accuracy’, as defined above, has not yet been attained,
but is not too far away either. A useful collection of explicit expressions for some GGAs
can be found in the appendix of Ref. [61], and more detailed discussion of some selected
GGAs and their performance is given in Ref. [62] and in the chapter of Kurth and Perdew
in Ref. [12].

In spite of these advances, the quest for more accurate functionals goes ever on, and
both in chemistry and physics various beyond-GGA functionals have appeared. Perhaps
the most popular functional in chemistry20 is B3LYP. This is a combination of the LYP
GGA for correlation [55] with Becke’s three-parameter hybrid functional B3 for exchange
[63]. Common hybrid functionals, such as B3, mix a fraction of Hartree-Fock exchange into
the DFT exchange functional (other mixtures are also possible). This mixing involves a
certain amount of empiricism (the weight factors given to the HF and DFT exchange terms
are adjustable) and optimization for selected classes of molecules. Formally, this might be
considered a drawback, but in practice B3 has proven to be the most successful exchange
functional for chemical applications, in particular when combined with the LYP functional
for Ec. More extreme examples of this semiempirical mode of construction of functionals
are Becke’s 1997 hybrid functional [64], which contains 10 adjustable parameters, and the
functionals of Refs. [65] and [66], each of which contains 21 parameters.

In common applications of such hybrid functionals self-consistency is enforced with
respect to the single-particle orbitals (as in the Hartree-Fock Kohn-Sham method [4]), and
not with respect to the density itself. Self-consistency with respect to the density would
require to treat the Fock term in the hybrid functional as an implicit density functional.
One way to do this is the OEP scheme discussed in the next section.

Another recent beyond-GGA development is the emergence of so-called Meta-GGAs,
which depend, in addition to the density and its derivatives, also on the Kohn-Sham

20This is written in early 2002, but things can change rapidly in this field.



kinetic-energy density τ(r) [67, 68]

τ(r) =
h̄2

2m

∑

i

|∇φi(r)|
2, (62)

so that Exc can be written as Exc[n(r),∇n(r), τ(r)]. In several recent tests [69, 70, 71]
Meta-GGAs have given favorable results, even when compared to the best GGAs, but the
full potential of this type of approximation has not yet been explored systematically.

6.3 Nonlocal and orbital functionals

As we have seen in the case of Ts, it can be much easier to represent a functional in
terms of single-particle orbitals than directly in terms of the density. Such functionals
are known as orbital functionals, and Eq. (37) constitutes a simple example. Another
important orbital-dependent functional is the exchange energy (Fock term) of Eq. (39).
The Meta-GGAs and hybrid functionals mentioned in the previous section are also orbital
functionals, because they depend on the kinetic energy density (62), and on a combination
of the orbital functional (39) with ordinary GGAs, respectively.

Since Ex (and all other orbital functionals) depend on the density only implicitly,
via the orbitals φi[n], it is not possible to directly calculate the functional derivative
vxc = δExc/δn. Instead one must use indirect approaches to minimize E[n] and obtain
vxc. In the case of the kinetic energy functional Ts[{φi[n]}] this indirect approach is the
Kohn-Sham scheme, described in Sec. 5. In the case of orbital expressions for Exc the
corresponding indirect scheme is known as the optimized effective potential (OEP) [72] or,
equivalently, the optimized-potential model (OPM) [73]. The minimization of the orbital
functional with respect to the density is achieved by repeated application of the chain
rule for functional differentiation,

vxc[n](r) =
δEorb

xc [{φi}]

δn(r)
=
∫

d3r′
∫

d3r′′
∑

i

[

δEorb
xc [{φi}]

δφi(r′)

δφi(r
′)

δvs(r′′)

δvs(r
′′)

δn(r)
+ c.c.

]

, (63)

where Eorb
xc is the orbital functional (e.g., the Fock term). Further evaluation of Eq. (63)

gives rise to an integral equation that determines the vxc[n] belonging to the chosen or-
bital functional Exc[{φi[n]}] [72, 74]. As an alternative to solving the full OEP equation,
Krieger, Li and Yafrate (KLI) have proposed a simple but surprisingly accurate approxi-
mation that greatly facilitates implementation of the OEP [72].

The application of the OEP methodology, either with or without the KLI approxi-
mation, to the Fock term (39) is also known as the exact-exchange method (EXX). The
OEP-EXX equations have been solved for atoms [72, 73, 75] and solids [76, 77], with very
encouraging results. Other orbital-dependent functionals that have been treated within
the OEP scheme are the self-interaction correction [37] and the Colle-Salvetti functional
[75]. A detailed review of the OEP and its KLI approximation is Ref. [74].

The high accuracy attained in applications of the OEP, and the fact that it is easier
to devise orbital functionals than explicit density functionals, makes the OEP concept
attractive, but the computational cost of solving the OEP integral equation is a major
drawback. However, this computational cost is significantly reduced by the KLI approx-
imation. In the context of the EXX method (i.e., using the Fock term as one’s orbital



functional) this is the common way to proceed. A further reduction of computational
complexity is achieved by not evaluating the orbital functional self-consistently, using
(63), but only once, following a converged self-consistent LDA or GGA calculation. This
‘post-GGA’ or ‘post-LDA’ strategy completely avoids the OEP and has been used both
for hybrid functionals and Meta-GGAs [63, 64, 67, 68]. In the case of hybrid functionals,
still another mode of implementation has become popular. This alternative, which also
avoids solution of Eq. (63), is to calculate the derivative of the Fock contribution to the
hybrid with respect to the single-particle orbitals, instead of the density as in (63), while
the other terms in the hybrid are still treated as explicit density functionals. The differ-
ential equation one then has to solve is of Hartree-Fock form, but with a weight factor in
front of the Fock term, and some explicit density functionals added to it. This scheme,
in which self-consistency is obtained with respect to the single-particle orbitals, can be
considered an evolution of the Hartree-Fock Kohn-Sham method [4], and is how hybrids
are commonly implemented.

Still another type of orbital functional is the self-interaction correction (SIC) [50].
This correction can be applied on top of any other density functional, and ensures that the
resulting corrected functional satisfies Ec[n] ≡ 0 and Ex[n] ≡ −EH [n] for a one-electron
system. The LDA is exact for a completely uniform system, and thus is self-interaction
free in this limit, but neither it not common GGAs or Meta GGAs satisfy the requirement
of freedom from self-interaction in general [67]. This is particularly critical for localized
states, such as the d states in transition-metal oxides. For such systems SIC has been
shown to greatly improve the uncorrected LDA [78, 79]. Unfortunately the SIC approach
does not lead to Kohn-Sham equations of the usual form. As a consequence, a number of
specialized algorithms for minimizing the SIC energy functional have been developed. For
more details on these algorithms and some interesting applications in solid-state physics
see Refs. [78, 79, 80]. For finite systems the SIC functional has also been implemented
by means of the OEP [37]. A detailed review of implementations and applications of SIC
can be found in the contribution of Temmerman et al. in Ref. [13].

Apart from orbital functionals, which are implicit nonlocal density functionals be-
cause the orbitals depend on the density in a nonlocal way, there is also a class of explicit
nonlocal density functionals. Such nonlocal density functionals take into account, at any
point r, not only the density at that point, n(r), and its derivatives, ∇n(r) etc, but also
the behaviour of the density at different points r′ 6= r. A typical example is

EADA
xc [n] =

∫

d3r ehom
xc (n̄(r)). (64)

In the LDA one would have n̄(r) ≡ n(r), but in the average-density approximation (ADA)
one takes [81]

n̄(r) =
∫

d3r′ n(r′)w[n](|r− r′|), (65)

where w[n](|r− r′|) is a weighting function that samples the density not only semilocally,
as do the GGAs, but over a volume determined by the range of w. Conceptually similar
to the ADA, but slightly more complicated formally and computationally, is the weighted-
density approximation (WDA) [81]. The dependence of the ADA functional on the integral
over n(r), instead of on derivatives as in the GGAs, is the reason why such functionals are
called nonlocal. In practice, this integral turns the functionals computationally expensive,



and in spite of their great promise they are much less used than GGAs. However, recent
comparisons of ADA and WDA with LDA and GGAs for low-dimensional systems [69, 82]
and for bulk silicon [83] show that nonlocal density functionals can outperform local and
semilocal approximations.

7 Extensions of DFT: New frontiers and old prob-

lems

Up to this point we have discussed DFT in terms of the charge (or particle) density
n(r) as fundamental variable. In order to reproduce the correct charge density of the
interacting system in the noninteracting (Kohn-Sham) system, one must apply to the
latter the effective KS potential vs = v + vH + vxc, in which the last two terms simulate
the effect of the electron-electron interaction on the charge density. This form of DFT,
which is the one proposed originally [20], could also be called ‘charge-only’ DFT. It is not
the most widely used DFT in practical applications. Much more common is a formulation
that employs one density for each spin, n↑(r) and n↓(r), i.e, works with two fundamental
variables. In order to reproduce both of these in the noninteracting system one must now
apply two effective potentials, vs,↑(r) and vs,↓(r).

21 This formulation of DFT is known
as spin-DFT (SDFT) [46, 47]. Its fundamental variables n↑(r) and n↓(r) can be used to
calculate the charge density n(r) and the spin-magnetization density m(r) from

n(r) = n↑(r) + n↓(r) (66)

m(r) = µ0(n↑(r) − n↓(r)), (67)

where µ0 = qh̄/2mc is the Bohr magneton. More generally, the Hohenberg-Kohn theorem
of SDFT states that in the presence of a magnetic field B(r) that couples only to the elec-
tron spin [via the familiar Zeeman term

∫

d3r m(r)B(r)] the ground-state wave function
and all ground-state observables are unique functionals of n and m or, equivalently, of n↑

and n↓.
22 Almost the entire further development of the HK theorem and the KS equations

can be immediately rephrased for SDFT, just by attaching a suitable spin index to the
densities. For this reason we could afford the luxury of exclusively discussing ‘charge-only’
DFT in the preceeding sections, without missing any essential aspects of SDFT.

There are, however, some exceptions to this simple rule. One is the fourth statement
of the HK theorem, as discussed in Sec. 4. Another is the construction of functionals. For
the exchange energy it is known, e.g., that [84]

ESDFT
x [n↑, n↓] =

1

2

(

EDFT
x [2n↑] + EDFT

x [2n↓]
)

. (68)

In analogy to the coordinate scaling of Eqs. (41) - (43), this property is often called
‘spin-scaling’, and it can be used to construct an SDFT exchange functional from a given

21More generally, one requires one effective potential for each density-like quantity to be reproduced in
the KS system. Such potentials and corresponding densities are called conjugate variables.

22In the particular case B = 0 the SDFT HK theorem still holds and continues to be useful, e.g., for
systems with spontaneous polarization. In principle one could also use ‘charge-only’ DFT to study such
systems, but then n↑(r) and n↓(r) become functionals of n(r) and nobody knows how to determine these
functionals.



DFT exchange functional. In the context of the LSDA, von Barth and Hedin [46] wrote
the exchange functional in terms of an interpolation between the unpolarized and fully
polarized electron gas which by construction satisfies Eq. (68). Alternative interpolation
procedures can be found in Ref. [49]. GGA exchange functionals also satisfy Eq. (68)
by construction. For the correlation energy no scaling relation of the type (68) holds,
so that in practice correlation functionals are either directly constructed in terms of the
spin densities or written by using, without formal justification, the same interpolation
already used in the exchange functional. In the case of the LSDA this latter procedure
was introduced in Ref. [46] and further analysed in Ref. [49].

The Kohn-Sham equations of SDFT are

[

−
h̄2∇2

2m
+ vsσ(r)

]

φiσ(r) = εiσφiσ(r), (69)

where vsσ(r) = vσ(r) + vH(r) + vxc,σ(r). In a nonrelativistic calculation the Hartree term
does not depend on the spin label,23 but in the presence of an externally applied magnetic
field vσ(r) = v(r) − σµ0B (where σ = ±1). Finally,

vxc,σ(r) =
δESDFT

xc [n↑, n↓]

δnσ(r)
. (70)

In the presence of an internal magnetic field Bxc (i.e., in spin-polarized systems) vxc,↓ −
vxc,↑ = µ0Bxc. This field is the origin of, e.g., ferromagnetism in transition metals. A
more detailed discussion of SDFT can be found in Refs. [3, 4, 47], and a particularly clear
exposition of the construction of xc functionals for SDFT is the contribution of Kurth
and Perdew in Ref. [12].

If the direction of the spins is not uniform in space24 one requires a formulation of
SDFT in which the spin magnetization is not a scalar, as above, but a three-component
vector m(r). Different proposals for extending SDFT to this situation are available
[85, 86, 87]. One mechanism that can give rise to noncollinear magnetism is spin-orbit
coupling. This is another relativistic effect [23], and as such it is not consistently treated
in either DFT or SDFT. A generalization of DFT that does account for spin-orbit coupling
and other relativistic effects is relativistic DFT (RDFT) [88, 89]. Here the fundamental
variable is the relativistic four current jµ. RDFT requires a more drastic reformulation
of DFT than does SDFT. In particular, the KS equation of RDFT is now of the form of
the single-particle Dirac equation, instead of the Schrödinger equation. There are also
many subtle questions involving renormalizability and the use of the variational principle
in the presence of negative energy states. For details on these problems and their eventual
solution the reader is referred to the chapters by Engel et al. in Refs. [8] and [15], and
to the book by Eschrig [14]. A didactical exposition of RDFT, together with representa-
tive applications in atomic and condensed-matter physics, can be found in the book by
Strange [23], and a recent numerical implementation is presented in Ref. [90].

23Spin-spin dipolar interactions are a relativistic effect of order (1/c)2, as are current-current
interactions.

24Such ‘noncollinear magnetism’ appears, e.g., as canted or helical spin configurations in rare-earth
compounds, or as domain walls in ferromagnets.



To study the magnetic properties of matter one would often like to be able to obtain
information on the currents in the system and their coupling to possible external mag-
netic fields. Important classes of experiments for which this information is relevant are
nuclear magnetic resonance and the quantum Hall effects. SDFT does not provide explicit
information on the currents. RDFT in principle does, but standard implementations of
it are formulated in a spin-only version, which prohibits extraction of information on the
currents. Furthermore, the formalism of RDFT is considerably more complicated than
that of SDFT. In this situation the formulation of nonrelativistic current-DFT (CDFT),
accomplished by Vignale and Rasolt [91, 92], was a major step forward. CDFT is for-
mulated explicitly in terms of the (spin) density and the nonrelativistic paramagnetic
current density vector jp(r). Some recent applications of CDFT are Refs. [93, 94, 95, 96].
E. K. U. Gross and the author have shown that the existence of spin currents implies
the existence of a link between the xc functionals of SDFT and those of CDFT [97].
Conceptually, this link is similar to the one of Eq. (68) between functionals of DFT and
SDFT, but the details are quite different. Approximations for xc functionals of CDFT
are discussed in Refs. [97, 98].

Apart from SDFT, RDFT, and CDFT, there exist many other generalizations of
DFT that were designed for one or other special purpose. As examples we mention
superconductivity [99, 100, 101, 102] and spin-density waves [87, 103], but there are many
more [3]-[15]. For reasons of space we cannot discuss these extensions here. Instead, let us
take a brief look at a problem that requires more radical departures from the framework of
conventional DFT: excited states. DFT is formulated in terms of ground-state densities,
and it is not immediately obvious how one could extract information on excited states
from them (although at least in the case of ‘charge-only’ DFT the fourth substatement of
the HK theorem guarantees that this must be possible).

Apart from the ad hoc identification of the KS eigenvalues with true excitation
energies, there are at least three more sound approaches to excited states in DFT that
have met with some success. The early suggestion of Gunnarsson and Lundqvist [47] to
use a symmetry-dependent xc functional to calculate the lowest-energy excited state of
each symmetry class has been implemented approximately by von Barth [104], but suffers
from lack of knowledge on the symmetry dependence of the functional. More recent work
on this dependence is Ref. [105]. An alternative approach to excited states, not restricted
to the lowest energy state of a given symmetry, is ensemble DFT, developed by Theophilou
[106] and Oliveira, Gross, and Kohn [107]. In this formalism the functional depends on
the particular choice for the ensemble, and a simple approximation for this dependence
is available [107]. Some applications of this method have been worked out by Nagy [108].
Other recent DFT approaches to excited states can be found in Refs. [109], [110] and
[111].

Perhaps the most radical departure from the framework of conventional DFT is
time-dependent DFT (TD-DFT). The time-dependent generalization of the HK theorem,
the Runge-Gross theorem, cannot be proven along the lines of the original HK theorem,
but requires a different approach [112, 113]. For recent reviews of TD-DFT see Ref. [114].
Excited states have first been extracted from TD-DFT in Ref. [115]. This approach is
now implemented in standard quantum-chemical DFT program packages [116, 117] and is
increasingly applied also in solid-state physics [44]. Another important application of TD-



DFT is to systems in external time-dependent fields, such as atoms in strong laser fields
[118, 119]. First steps towards studying dynamical magnetic phenomena with TD-SDFT
have been taken very recently [120].

A very different way of using DFT, which does not depend directly on approximate
solution of Kohn-Sham equations, is the quantification and clarification of traditional
chemical concepts, such as electronegativity [4], hardness, softness, Fukui functions, and
other reactivity indices [4, 121], or aromaticity [122]. The true potential of DFT for this
kind of investigation is only beginning to be explored.

All extensions of DFT face the same formal questions (e.g., noninteracting v-represen-
tability of the densities, nonuniqueness of the KS potentials, meaning of the KS eigen-
values) and practical problems (e.g., how to efficiently solve the KS equations, how to
construct accurate approximations to Exc, how to treat systems with very strong cor-
relations) as do the more widely used ‘charge-only’ DFT and SDFT. These questions
and problems, however, have never stopped DFT from advancing, and at present DFT
emerges as the method of choice for solving a wide variety of quantum mechanical prob-
lems in chemistry and physics — and in many situations, such as large and inhomogeneous
systems, it is the only applicable first-principles method at all.

The future of DFT is bright [1, 36, 123] — but to be able to contribute to it, the
reader must now leave the present superficial overview behind, and turn to the more ad-
vanced treatments available in the literature [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
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