PHY 241, Quantum Magnetism: Homework Set #6

Due: March 2003

1. Tight Binding Model on the CsCl Lattice.

Consider two distinct atoms, each with a single ("s") orbital, on the CsCl lattice (bcc-like, but with two different atoms).

- (a) Create the tight binding Hamiltonian for this crystal for near neighbor hopping t and 2nd neighbor hopping t'.
- (b) Plot the bands along the lines Γ -X-M-R- Γ . Choose t, t', and the difference $\Delta \epsilon$ of on-site energies to be comparable, but make your own choice. Interpret the results.

2. Non-collinear Band Structure.

- (a) To the TB Hamiltonian of Problem 1, add an on-site exchange potential $\frac{1}{2}\vec{\Delta}\cdot\vec{\sigma}$, where $\vec{\Delta}=I\vec{m}$ as discussed in class . Write out the explicit form of the Hamiltonian.
- (b) Choose $\Delta \epsilon = 1$ eV, t = 0.5 eV, t' = 0, and $|\Delta| = 0.2$ eV on both atoms. Plot, along the symmetry lines mentioned in Problem 1, the band structure for relative directions of the moments of the two atoms of 0° , 45° , 90° , 180° . Considering the Hamiltonian, try to interpret the behavior.