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Abstract. The Hohenberg-Kohn-Sham spin-density-functional (sDF) formalism is applied
to calculate magnetic properties of transition metals. A Stoner-like band model is derived
in the sDF formalism, The solutions of the SDF equations are assumed to have Bloch
character and perturbation theory is used to show that the energy splitting between
spin up and spin down states is approximately wavevector independent and proportional
to an energy-dependent Stoner parameter. This result makes it possible to obtain magnetic
properties from the paramagnetic density of states and the Stoner parameter alone.

Results in the local-spin-density approximation for the Stoner parameters of V, Fe,
Co, Ni. Pd, and Pt are presented. The relative stability of the para and ferromagnetic
states is found to be correct for all the elements investigated and the total magnetization
compares favourably with experiment. Values for the Curie temperature are systematically
too high. Experimental estimates of the Stoner parameter are compared with the calcu-
lated values and the deviation is at most a few tenths of an eV.

1. Introduction

A major difficulty in the description of magnetism in transition metals stems from
the d electrons being neither completely localized nor completely itinerant. The band
theories of magnetism, e.g., the Stoner model, stress the itineracy. They can explain
the low temperature properties (e.g.. Herring 1966, Cracknell 1971, Freeman et al
1975) of several transition metals in terms of an adjusted band structure though
the construction of a first principle potential required in the calculation is still a
major problem (Brinkman 1973).

The Hartree-Fock approximation is frequently used as a basis for band theories
(Wohlfarth 1953. 1968). However, the importance of correlation for magnetic proper-
ties was pointed out at an early stage by, e.g., Wigner (1934) and Wohifarth (1953).
Band theories can also be obtained in the Kohn-Sham scheme (Kohn and Sham
1965) in its generalization to a spin-density-functional (SDF) formalism. This formalism
allows the inclusion of correlation effects, while retaining the conceptual and compu-
tational simplicity of the band picture. In principle, an improved description of corre-
lation effects involves ‘simply” an improved construction of the exchange-correlation
function occurring in the theory.

Band theories can include a tendency to formation of localized moments, i.e.
the propagating states may have site- and spin-dependent amplitudes, giving magnetic
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moments varying in magnitude and direction from site to site (Friedel et al 1961,
Lederer and Blandin 1966, Lederer 1966). This possibility is not taken into account
in this paper, where the electrons are assumed to have Bloch character. The purpose
is (i) to derive a Stoner-like band model in the sDF formalism and (ii) to compare
the predictions of this model with experiment, using the local-spin-density (LSD)
approximation for exchange and correlation. In the derivation, an expression for
the energy splitting of bands with different spins is calculated using perturbation
theory. The splitting is approximately wavevector independent and proportional to
a generalized, energy-dependent Stoner parameter. Using the LSD approximation, this
parameter has been calculated for a number of transition metals (V, Fe, Co, Ni,
Pd, Pt) and the results show systematic trends within and between the rows of the
periodic system. Neglect of the weak wavevector dependence of the band splitting
allows magnetic properties to be expressed simply in terms of the density of states
and the Stoner parameter. By using densities of states from published band calcula-
tions, the theory is found to give systematically correct predictions for the relative
stability of the para- and ferromagnetic phases for all the elements studied. This
test is significant, as the same analysis using the X approximation (Slater 1974)
predicts ferromagnetism for all these metals, except Pt, if recommended (Slater 1974)
values of x are used. The difference is due to inclusion of correlation in the LSD
approximation. The results for the total magnetization are reasonable, but the calcu-
lated Curie temperatures are systematically too high, as expected for a Stoner model.
Comparison with experimental estimates of the Stoner parameter suggests that the
error in the calculated values is at most a few tenths of an eV.

The adequacy of the LSD approximation for the description of magnetism in transi-
tion metals has independently been investigated by Madsen et al (1976). Their self-
consistent band calculations using the atomic sphere approximation (Andersen 1973,
1975) with neglect of hybridization were interpreted in terms of Stoner theory and
canonical d state density. Their approach is complementary, in that they focus on
the volume and structure dependence and hence on band theory.

In § 2 the spF formalism for T # 0 is presented. Following the derivation of
a Stoner-like theory and stability criteria, formulae for the magnetic moment and
the Curie temperature are obtained. In § 3 results for the Stoner parameter for V,
Fe, Co, Ni, Pd, and Pt are presented. The relative stabilities of the para- and ferro-
magnetic phases are compared and results for the total magnetization and Curie
temperature are given. In § 4 it is shown that charge fluctuations are substantially
suppressed in the LSD approximation, the trends in the calculated Stoner parameters
are explained, the calculated values are compared with experimental estimates of
the Stoner parameter and the high results for the Curie temperature are discussed.

2. Derivation of a Stoner-like model in the SDF formalism

The main features of the Stoner model (see Stoner 1939 and references therein)
are (i) the itinerant description of the electrons, originally assumed to be in a parabolic
band, and (ii) the introduction of an exchange energy, which is proportional to the
magnetization squared—the constant of proportionality being called the Stoner para-
meter. This model has been used in discussing many magnetic properties, including
the first semiquantitative discussion of a transition metal band structure by Slater
(1936) for Ni, which was correctly predicted to be ferromagnetic. The Stoner model
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has been derived in the Hartree-Fock approximation by, e.g., Wohlfarth (1953, 1968),
who also gave an explicit formula for the Stoner parameter including some correla-
tion.

In the present derivation of a Stoner model the main approximations are the
use of a Bloch representation for all states and the LSD approximation, which is
introduced to calculate Stoner parameters. This approach neglects effects of localized,
fluctuating moments, which may be present in the system. The main problem in
the derivation is to determine the energy splitting of bands with different spins. The
splitting is due to a lowering (raising) of the exchange-correlation potential, and
thus a lowering (raising) of the energy of majority (minority) electrons, when the
system is spin polarized. Using first order perturbation theory, the band splitting
is obtained as the expectation value of potential splitting, which is related to the
spin polarization. It is shown in appendix ! that the spin polarization is essentially
due to spin-flips of d electrons at the Fermi surface. Neglecting other contributions
an explicit expression for the spin polarization is obtained (equation 2.9). In appendix
2 the nonspherical part of the spin polarization is found to be of little importance
for the properties studied, and neglecting it a formula for the potential splitting
is derived. The calculation of the expectation value of this potential is simplified
by the small weight in the d band of angular quantum numbers different from two
and a simple expression for the band splitting is obtained (equations 2.14 and 2.15)
and compared with the results of a spin polarized band calculation.

2.1. The SDF formalism

The spF formalism for T = 0 has been discussed in several papers (Kohn and Sham
1965, Stoddart and March 1971, von Barth and Hedin 1972, Gunnarsson et al 1972,
Rajagopal and Callaway 1973, Gunnarsson and Lundgvist 1976). In the latter paper
the extension to T =+ 0 was treated and we give the basic equations for this case.
The equations are in a particularly simple form for a ferromagnetic metal, for which
the spin-density everywhere is parallel or antiparallel to some fixed direction, the
same all over space. The spin-density at the temperature T is given by

ps(r) = Z 1'J/i,s(r)|2f(€i,s) (21)
where s = +, — is a spin index, f(; ;) = {1 + exp[(& s — w)/kT]} "' is the usual Fermi-
Dirac function and y is the chemical potential. The functions y; (r) are the solutions
of a Schrodinger-like equation

h? '
— Vi) + & —p(i—)rd
2m r—r|

g g (r))wi,s(r) = 60 dP) (22)

where v{r) is some external, spin-dependent potential and p(r) = p.(r) + p_(r) is the
total density. Equations (2.1 and 2.2) are in principle exact. In practice approximations
for the exchange-correlation potentials are necessary, and the local-spin-density (LSD)
approximation is used in the numerical calculations. This approximation is exact in the
limit of spatially slow and weak density variations and has been found to have a broad
range of applicability (Tong and Sham 1966, Lang 1973, Smith et al 1973, Lang and
Williams 1975, Janak et al 1975, Gunnarsson and Johansson 1976). The equation (2.2)
is not invariant under rotations in spin space if the LSD approximation is used. However,
this is of minor importance for a ferromagnetic system, which has a preferred direction
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defined by the magnetic moment. In the LSD approximation the exchange-correlation
potentials v} are related to the exchange-correlation part f* of the free energy per
electron of a homogeneous electron liquid. For applications in the temperature
range considered here, however, data for T =0 can be used (Gunnarsson and
Lundgvist 1976). Then one gets

vy(r) = e Lo (r), p- (1] (2.3)

¢
Opdr)
where €*° is the exchange-correlation energy per electron of a homogeneous electron
liquid. Numerical results for these potentials are given in the literature (von Barth
and Hedin 1972, Gunnarsson and Lundqgvist 1976). Potentials from the latter paper
are used here and are given as an interpolation formula in terms of the density
parameter r, (4nrjal/3 = 1/p) and the fractional spin-polarization { = m/p

(m=p, —p-)

50
v, ) = pt (B 45 Jfﬂ g). (24)

Here it = —2/(nary), o = (497)V3, B = 1 + 0:0545r,In(1 + 11-4/r),
0 =1~—0036r, — 1-36r/(1 + 10r) and y = 0.297.

For the magnetic properties the most important parameter is 4, which for small
spin-polarizations determines the splitting of the potentials. The & used here and
the result of von Barth and Hedin (1972), both with correlation included, are plotted
in figure 1. In the limit of small spin-polarizations the potentials (2.4) can be compared
with the Xa potential (Slater 1974) and the Slater potential (Slater 1951a), which
would then correspond to & equal to 3o and 3, respectively. These two values for

¢ are plotted in figure | using a« = 0-70, a value typical of those recommended for
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Figure 1. The function d(r;) describing the spin splitting of the exchange-correlation poten-
tials (equation (2.4)). The full curve shows the d(r,) used here and the broken curve
the result of von Barth and Hedin (BH) (1972). The chain curves give the 8(r,) derived
from the X« and Slater potentials. Correlation effects are included in the former two
curves, which give considerably smaller &(r,).
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transition metals (Slater 1974). If only exchange is included in the potential (2.3) the
so called Kohn-Sham—Gaspar potential is obtained (Kohn and Sham 1965). This
potential is represented by x = $ and corresponds to 8(r,) = 1. Figure 1 shows that
correlation reduces o substantially.

It has been argued that some correlation can be included by using a x« value
larger than £ as the X« potential then is closer to the potential (2.4) in the paramag-
netic limit. However, figure 1 shows that to simulate the correlation effects on the
spin-dependence of the potential (2.4) an « value smaller than £ is required.

The interpolation formula (2.4) was constructed to fit the calculated electron liquid
data in the r, range 1-5. For the paramagnetic phase the interpolation formula (2.4)
gives a somewhat more attractive potential for small r; than the result of an r,
expansion (Carr and Maradudin 1964). This is not important in the present paper,
where we are just interested in the spin-dependence. In a full band calculation one
might, however, use a more accurate paramagnetic potential (Hedin and Lundqvist
1971) and obtain the spin-dependence from equation (2.4).

2.2. Band splitting and spin polarization

First the band splitting is related to the spin polarization. The band energies and
wavefunctions of the paramagnetic state are assumed to be known. The effects of
introducing a spin polarization are calculated using perturbation theory. As in the
original Stoner theory, the net magnetization per atom

Am = f [p-(F) — p_(r)]/d®r = f m(r) dr 25)
WS cell W

S cell

is used as an expansion parameter, and effects of first order in Am are considered.
The exchange-correlation potentials v!° in equation (2.4) can be expanded as

UE(r) — 080 = Amui{r) + O(Am?) (2.6)

where vfj, is determined from the spatial distribution of the spin polarization.
Equation (2.6) gives the main contribution to the band splitting, which to first
order is given by the expectation value of equation (2.6)

A€y, = €xns — Epn = {kn|vX — v|knd> = Am{kn|uss,| kn) (2.7)

In addition, the spin polarization causes a shift of the electrostatic potential, which
contains a small first order term in Am. To lowest order in Am, however, this shift
is spin-independent and does not contribute to equation (2.7).

The next step is to find the spin polarization m(r), from which t{{, and Aex, can be
calculated. In the remaining part of this subsection it will be shown that the spherical
average of the spin polarization is

(m(r)) = (Am/Am)b3(r, er) (2.8)

The function ¢,(r,€) is the solution of the radial Schrédinger equation for the energy
€ and the angular quantum number [, normalized to the Wigner—Seitz sphere.
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The spin polarization is caused by two effects: (i} Electrons in states close to
the Fermi surface flip their spins due to the changes in the chemical potentials for
spin up and spin down clectrons when the system is spin polarized. (ii) Spin polariza-
tion causes modifications of the potentials, giving changes in the wavefunctions
of all states. These changes are different for spin up and spin down states giving
a spin polarization. In appendix 1 it is argued that the first effect dominates. Accord-
ing to equation (2.1) it gives the spin polarization

m(r) = kZ Wkn(P)? Lf (€ans) — fl€kn-)] (29)
to lowest order in Am.

For the wavefunctions y,, it is convenient to use a one-centre expansion, (e.g.
Seitz 1940)

1 .
Wn(r) = ———-,_:Z exp(ik. R) @, (r — R) (2.10)
v NER

where the vectors R give the positions of the lattice sites, N is the number of sites and

Qpr) =Y. Cim(kR)PAF, €xn) VimlF) inside the Wigner—Seitz sphere
im

(2.11)
=0 elsewhere.

Here and in the following the Wigner-Seitz cell is approximated by a sphere. The
functions Y,,,(F) are spherical harmonics and ¢;,(kn) are expansion coefficients. For
a muffin-tin potential the wavefunction can always be written as in equation (2.11).

Only states close to the Fermi level contribute to the spin polarization (2.9),
and we will now show that these states have essentially d character. In the lowest
six unhybridized valence bands the number of electrons per atom with d and sp
character are five and one, respectively. Further, the width of the sp band is a factor
two to three times larger than the d bandwidth. Assuming that the density of states
is proportional to the number of electrons and inversely proportional to the band-
width, one finds that the d electrons contribute about 90-95 per cent to the density
of states within the d band. These simple arguments are supported by band calcula-
tions. For instance, for Cu with a band structure similar to the FCC transition metals,
it has been reported that within the d band energy range the d character is always
more than 90 per cent and for most states more than 95 per cent (Wood 1967).
It is therefore a good approximation to assume that only [/ = 2 terms contribute
to the spin polarization. This simplifies the calculations considerably.

In appendix 2 the non-spherical parts of the spin polarization are found to contrib-
ute little to the properties considered (in, for instance, the stability criteria (2.16
and 2.17) below it gives a contribution which is less than four per cent of the leading
one). Therefore, only the spherical average {m(r)> of equation (2.9) will be studied

i)y = 3 B30T (flewn-) = St .12
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where the energy argument € in ¢,(r,e} is correct to first order in Am. As
¢,(r.¢p) is normalized to the Wigner-Seitz sphere the sum in equation (2.12) has a
simple relation to the net magnetization Am, and one obtains formula (2.8).

2.3. Stoner parameter

From the spin polarization (2.8) the exchange-correlation potentials in equation (2.4,6)
can easily be calculated as

Am[,(r, EF)]Z ‘
plr)

This equation together with equation (2.7) gives the band splitting. The expectation
value in equation (2.7) is complicated by the appearance of several [ quantum numbers.
However, the magnetic properties are mainly determined by the splitting in the d band
region. Following the discussion of §2.2. only the | = 2 components of the wave-
functions are considered in equation (2.7), enabling the band splitting to be expressed as

50 = 00) = Am ) = o 1) 30 .13

Ae,, = — I(eg,)Am. (2.14)
The generalized Stoner parameter I(€) is given by equations (2.7, 2.13 and 2.14)
e W)\ o 3. )pi(r.er)
I(e) = ~ redr rg . (2.15)
== [t B

This is the final formula for the energy splitting. According to the definition (2.7)
this quantity depends a priori on both the wavevector k and the energy e, while
our final expression depends on k only implicitly through the energy. Besides the
explicit formula for I(e), the k independence is the main result of the analysis. It
follows from the physically well motivated assumptions that (i) the states under con-
sideration are mainly of d character and that (ii) the non-spherical part of the spin
polarization gives a small contribution to the band splitting.

The general form as well as the magnitude of the results in equations (2.14 and
2.15) was tested by a comparison with a full spin polarized band calculation for
Fe of Wakoh and Yamashita (1966). As this calculation was done using the Xz
method with x = 0.5. we have in this particular case calculated the Stoner parameter
with a & value which is consistent with the X« method, i.e. with § = 3% The wavefunc-
tions @(r,ep) and ¢.(r,€) were obtained by solving the radial Schrddinger equation
with the potential being an average of the majority and minority spin potentials
calculated by Wakoh and Yamashita. The results for the band splitting as a function
of the energy is shown in figure 2. The results calculated from equations (2.14 and
2.15) are compared with the values obtained by Wakoh and Yamashita for states
with predominantly d character at various symmetry points. The figure shows that
the predicted k independence is essentially fulfilled and that the present results also
agree well in magnitude with the band calculation, the deviation being typically 5-10
per cent. The agreement is a test of all the approximations except the use of a
spherical exchange-correlation potential, as Wakoh and Yamashita, too, neglected
non-spherical components of the potential.

The energy dependence i1s a consequence of the shape of the wavefunctions (see
equation (2.15)). The spin polarization is caused by spin flips of electrons at the
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Figure 2. The spin splitting of the energy bands as a function of the energy. The triangles
show the splittings for various symmetry points in the Brillouin zone obtained in a
full band calculation (Wakoh and Yamashita 1966). Our results calculated from equations
{2.14 and 2.15) are given by the curve. The figure shows that the band splitting is energy-
dependent but has only a weak k dependence.

Fermi energy, which is near the top of the d band for the metals to the right of
the 3d series, e.g., iron, and the corresponding wavefunctions are rather contracted
towards the nuclei (Wood 1960). Thus the spin polarization is concentrated to the
inner parts of the atoms and the difference between the potentials for spin up and
spin down electrons is consequently largest there. This difference is effectively picked
up by the contracted wavefunctions at the top of the band, while states at the bottom
with more extended wavefunctions are less influenced.

The discussion so far has essentially been within the LSD approximation, but
the arguments are believed to be of more general validity. Assumption (i) about
the d character is essentially independent of the approximation for the exchange-cor-
relation potential, while this approximation of course has to be specified to discuss
assumption (ii) about a spherical potential. For potentials with a smooth non local
dependence on the density there should however be a tendency to average out the
non-spherical part of the density. For such potentials assumption (i1) might therefore
be even better than in the LSD approximation. The only change in the derivation
above would then be a replacement of the exchange-correlation potential (2.13), which
would give a new expression for the Stoner parameter.

2.4. Magnetic properties

The magnetic ground-state properties can be derived from equations (2.1, 2.2, 2.14
and 2.15). The essential k independence of the band splitting enables these properties
to be related to the density of states, which contains the necessary information about
the band structure, and the Stoner parameter, which gives the required information
about the wavefunctions. Below we give some results, which are needed for the calcu-
lations. The Curie temperature is the temperature at which (Stoner 1936)

I(ep) ’ %f(e)N(e)de +1=0, (2.16)

where N(e) is the density of states per atom and spin. At T = 0 this equation gives the
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Stoner criteria for ferromagnetism (Stoner 1936)

I(er) N(eg) > 1. (2.17)
The susceptibility is given by:

20

(= ——F—— 2.18

T T e NGy (213)
where y, 18 the susceptibility for non-interacting electrons. To calculate the
magnetization at T = 0, we introduce €(n), the energy to which the band has to be
filled to accumulate r electrons per atom and spin.
("t adn

o Ne(n)]

If the spin up and spin down bands are filled with n,. = (n + Am)/2and n_ = (n — Am)/2,
respectively, the chemical potentials become

€(n) (2.19)

pe = €n.) F 3 Aml(er) (2.20)
to lowest order in Am. Equilibrium requires
CE L[ €E cE )

i ™ z(anj—ﬁ)— e — 1) = 0 @21)

where E is the total energy of the system. Using equations (2.19 and 2.20) the
condition (2.21) is rewritten as (Lomer 1967)

1 " 4w
Am J, Ne(n')]
This gives the magnetization as a function of the Stoner parameter. If there are more

than one solution, the condition 62E/é(Am)* > 0 can be used to show that at least one
solution is metastable.
O°E ¢ SF(Am)

- V= L -
Ay A Am){AMEF(AM) Ier)]} = 2[F(Am) — Her)] + Am Am)

At equilibrium the first term is zero according to equation (2.22). This new result
shows that the state is metastable if F(Am) has a negative derivative.

Iep) = = F(Am) (2.22)

(2.23)

L
2

3. Results

Calculations are made on V. Fe, Co, Ni, Pd, and Pt, i.e. the transition metals which
are ferromagnetic or almost ferromagnetic under normal conditions. The relative
stability of the para- and ferromagnetic phases is calculated. For the ferromagnetic
metals the Curie temperature and the total magnetization are given.

The key quantity in the calculation of the magnetic properties are the density of
states for the paramagnetic phase and the Stoner parameter. In a consistent treatment
these quantities should be computed from a band calculation using the exchange-
correlation potential (2.4). As such band calculations are not available, band struc-
tures obtained with other potentials are used. This introduces uncertainties in the

M.P.(F) 6/4---f
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Table 1. The Stoner parameter Ke;) (equation (2.15)) in the LSD approximation, the X«
method and with the Slater potential. We have used the recommended values for
{Slater 1974) for V-Ni and extrapolated to the values 0-70 and 069 for Pd and Pt,
respectively. The Slater potential corresponds to & = 1'0. We give a range of values for
the quantity Ieg)N(ey) obtained by using values of N(eg) from various band calculations.
The theory predicts ferromagnetism if [(ef)N(eg) > 1 and P(F) shows that the metal is
paramagnetic (ferromagnetic) in nature at T = 0.

LSD Xz Slater potential
Metal {(33] Iep)Nleg) I(er) Ier)Nler) Hey) I(ep)Nler)

vV (P) 080 0809 101 1-0-1-2¢ 1141 14-1-7#
Fe,scc (F) 092 1:5-1-7° 114 1-8-2:2° 1-60 2:6-3-0°
Co (F) 099 16-1-8° 1-21 1.9-2:2¢ 1-71 27-31¢

Ni(F) 101 21 123 264 1-74 36

Pd (P)y 070 0-8° 0-86 1-0¢ 1-23 1-5¢

Pt (P) 063 0-5¢ 078 0.7 1-13 1-0¢

(a) Yasui et al (1970) and Papaconstantopoulos et al (1972)

{(b) Mattheiss (1965). Snow and Waber (1969) and Connolly (1970)
(c) Wakoh and Yamashita (1970) and Ishida (1972)

(d) Hodges et al (1966)

{e) Andersen (1970)

results, since the densities of states differ appreciably between different band calculations
due to different potentials, methods of calculation and numerical accuracy. The
main conclusions obtained in the following seem, however, to be independent of
the band calculations chosen.

To calculate the Stoner parameter one needs to known the electron density and
the radiai d wavefunction. The choice for these quantities is described in appendix
3. The results for the Stoner parameter obtained with the LsD approximation, the
X« method and the Slater potential are compared in table 1. It shows that the
Xo and Slater potentials give larger Stoner parameters than the LSD approximation.
This is due to the improper treatment of correlation in the former two approxima-
tions.

3 T T L LI
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Figure 3. The magnetic moment of iron in Bohr magnetons as a function of the Stoner
parameter I (equation (2.22)). The curves are obtained for different densities of states
(Snow and Waber (SW) 1969, Mattheiss (M) 1965, Connolly (C) 1970). The arrow shows
the experimental moment and the broken line our calculated value for the Stoner par-
ameter.
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Figure 4. The Curie temperature of iron as a function of the Stoner parameter (equation

(2.16)) for the same densities of states as in figure 3. The arrow marks the experimental
Curie temperature.

Some paramagnetic band calculations have been collected to check the stability
criterion (2.17). Table 1 shows the range of values for the quantity I(eg)N(eg) with
N(er) obtained from different band calculations. We notice that for all the metals
studied the LSD approximation gives the correct result for the relative stability of
the para- and ferromagnetic states.

The X« and Slater potentials give a stronger tendency to ferromagnetism than
the LSD approximation, the Slater potential predicting all the metals studied, except
possibly Pt, to be ferromagnets. The same seems to be true in the Xz method, too.
In the X« approximation, however, V and Pd are close to the phase transition and
the uncertainty in the band calculations makes 1t difficult to definitely assess the
states of these two metals in the X scheme. Thus Cronklin et al (1972) have reported
V to be paramagnetic in the Xz approximation.

To calculate the magnetic moment at T = 0 equation (2.22) has been used. The
quantity F(Am)} for iron is plotted in figure 3 for various calculations of the density
of states. The calculated magnetic moments fall in the range 2:1-2:7 Bohr magnetons
compared with the experimental result 2-2. For both Co and Ni the majority spin
d band is found to be full. This is correct for Ni, as is well known, and probably
also for Co (Wohlfarth 1970). The actual values of the magnetic moment for the
latter two metals are of less interest in this context as they essentially just reflect
the number of unfilled d states in the paramagnetic phase.

The Curie temperature is calculated from equation (2.16). The value of

f € Neyae)
), Ge

for iron as a function of the temperature is shown in figure 4. The Curie temperatures
obtained for the ferromagnetic metals considered are shown in table 2. The results are
systematically much larger than the correct ones.

4, Discussion

The description of charge fluctuations in transition metals has attracted considerable
interest and Hartree-Fock band theories have been criticized for allowing large
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Table 2. The Curie temperature (K) in the LSb approximation compared with experiments.

Metal LSD Experiment
Fe 4400-6200 1040

Co 33004800 1400

Ni 2900 631

fluctuations in the number of d electrons on a particular atom. For this reason
the Hubbard model (Hubbard 1963) was proposed, which due to its relative simplicity
allows a treatment beyond the Hartree~-Fock approximation. In this model the
importance of the fluctuations is determined by the Coulomb repulsion U. and for
an infinite U there would be no fluctuations at all. Estimates of U (Herring 1966,
Watson 1973, Cox et al 1974) indicate that U is not very large for transition metals and
that the fluctuations are reduced but not negligible. A measure of the fluctuations
is

A= % f d3r f A peyp(r' )y Orws — r)Brws — ') — (1 — 1) 4.1)

¢ FEYr

where {p(r)p(r')) is the density—density correlation function, » is the number of
electrons per atom. f(x) is the Heaviside step function and the origin is at one of the
nuclei. If the electrons are treated as independent, ie. {p(r)p(r)> = {p(r); pr')>,
one gets A = 1. In the opposite limit of extreme correlation, where the number of
electrons on each atom is always exactly n, one gets A = 0. For the LSD approximation
we use (Gunnarsson and Lundqvist 1976)

ANy = oy T<pr)> + < iglr — vl plr)] — 11T (4.2)

Using equations (4.1) and (4.2) and the random phase approximation for g[jr — v, p(r)]
(Hedin 1965) A = 01 is obtained for iron. Thus the fluctuations are substantially
suppressed in the LSD approximation.

Table 1 exhibits certain trends for the Stoner parameter, and to understand
them it is useful to rewrite equation (2.15) as

4 1 R 2
fler) = gt | (’"7) 5(rs)<b4(r,ep)d(£;) (#3)

where ®(r,er) = r,(r,er). As & has roughly the same spatial dependence for all
the metals, varying between 0-8-0'9 over the region of interest (cf figure 1), the other
two factors are the important ones for the trends. Plots of (r,/r)* and ®*(r, ) against
the scaled radius r/rws for some typical metals are given in figure 5.

Figure 5a illustrates the decreasing trend of (ry/r)* along the 3rd row series V-Ni
and along the VIII group series Ni, Pd, and Pt, which reflects the increasing density
along these series. A high electron density means that a certain spin polarization
gives a smaller fractional spin polarization { and thus a smaller difference between
the majority and minority spin potentials (see equation (2.4)). This is the main source
of the r, dependence in equation (4.3) and gives a factor r2. In addition the quantity
i in the exchange-correlation potential contributes a factor r; ', The wavefunctions
gradually contract along the series V-Ni, as is indicated by the results for V and
Ni in figure 5h. The contraction is partially due to a more binding potential at
the end of the series, connected with the incomplete screening of the increased nuclear
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Figure 5. (@) The quantity (rg/r)? (appearing in equation (4.3} as a function of r/rws,
where r and rws are the distance from the nucleus and the Wigner-Seitz radius, respect-
ively. The bulk densities are obtained by superposing the atomic densities. (5) The wave-
function ®(r.ef) = r¢p,(r.¢r) to the fourth power. The figure shows the trends for the
3rd row and the VIII group series.

charge (cf. Slater’s rules (Slater 1951b and Coulson 1961)). A second reason is the
energy-dependence of the wavefunctions. These gradually contract as their energies
are increased (Wood 1960). Therefore the successive filling of the d band along
the 3rd row series gives a further contraction of ®(r,er). In the series Ni, Pd, and
Pt, on the other hand. the increasing number of nodes makes the wavefunction expand.
The imtegral (4.3) can be considered as a weighted average of (ryr)? 8(r)®@%(r,€f)
with the normalized weighting factor ®*(r,er). If the wavefunction ®(r,ef) is
concentrated within some region of space, the main contribution to this average
comes from a region where ®(r, ¢r) tends to make the average equantity large. This
tends to give a large Stoner parameter and reflects the importance of exchange if
the wavefunctions are essentially confined to a small region of space.

The two factors (r,/r)? and ®*r,er) work in the opposite direction in the series
V. Fe. Co. and Ni. The numerical results and the figure show, however, that the
change in the wavefunction is the more important one. In the series Ni, Pd, and
Pt both factors tend to decrease the Stoner parameter in accordance with table 1.

Finally. figure 6 shows the integrand of equation (4.3) for Ni. Due to the factor
®*r,er) most of the contribution to the Stoner parameter comes from the high

T
OLp= Ni -
-
02 -
.
]
00 05 10

rirgs

Figure 6. The integrand of equation (4.3) as a function of r/rys for Ni. The figure illus-
trates the importance of the high-density region in the inner parts of the d sheli.
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density region. with r; typically in the range 0-3-1-0. The r; values corresponding
to the average density are considerably larger, being about 1-2-1-6.

In § 3 magnetic properties calculated in the LSD approximation were compared
with experiments. The opposite route will now be followed and estimates of the
Stoner parameter extracted from experiments will be compared with calculated values.

For Fe Gold et al (1971) have calculated de Haas-van Alphen data assuming
a constant band splitting. They obtained fairly good agreement with experiments
if they used 0-99 eV (compared to 0-92eV calculated in the LSD approximation) for
the Stoner parameter, the value for which they found the correct net magnetization.

Wakoh and Yamashita (1970) found in a calculation on Co that a spin splitting
of 1-2eV between the spin up and spin down densities of states gave good agreement
with photoemission data for the ferromagnetic phase. This number corresponds to
the value 0-76 eV (LsD 0:99 eV) for the Stoner parameter.

For Ni, Zornberg (1970) has adjusted a parametrized band structure to fit a
large amount of experimental data, including Fermi surface data, optical data and
the total magnetization. He obtained a Stoner parameter in the range 0:75-1-0eV
(Lsp 1-01 eV). Mook et al (1969) have used a band calculation to describe the intensity
variation in neutron scattering against spin waves, obtaining a Stoner parameter
of [-0eV.

For Pd and Pt estimated values for the susceptibility enhancement (Andersen
1970} and formula (2.18) have been used to estimate the Stoner parameters. The
values 0-74 (Lsp 0-70) and 0-86 (LsD 0-63) eV were obtained for Pd and Pt. respectively.

Finally, Asano and Yamashita (1973) have made self-consistent X2 calculations
for the ferro- and antiferromagnetic 3rd row metals. For each metal they adjusted
the band splitting until they obtained the correct magnetic moment. With x = 0-8
a Stoner parameter in the range 0-7-0-8eV was required. They also remarked that
this value would increase by about 0-05 eV if they used x = %, a value which gives
paramagnetic bands closer to those used here. These estimates indicate that the calcu-
lated values for the Stoner parameter are fairly accurate.

The Xu approximation gives Stoner parameters which are substantially larger
(20-60 per cent) than the estimates above (except for Pt). The enhanced tendency
to ferromagnetism has also been observed in band calculations by, e.g., Wakoh and
Yamashita (1966) and DeCicco and Kitz (1967).

The calculated Curie temperatures T, are much too high (table 2) as is expected
for a Stoner-like model (e.g., Friedel et al 1961, Mott 1964). Figure 4 shows that
too high a result for T, is obtained for all the band structures considered, and that
a moderate change in I{eg) is not sufficient to give the correct value for T.. The
inadequacy of the Stoner model at high temperatures is also indicated by experiments
(Fadley and Wohlfarth 1972) and in particular, there is evidence that for the paramag-
netic phase there exist localized moments with lifetimes long enough to be observed.
Effects of the fluctuations of these moments, for instance an increased entropy, have
not been included in the present treatment. Band theories can, however, describe
the formation of localized moments (Friedel et al 1961, Lederer and Blandin 1966,
Lederer 1966). The Curie temperature should then be mainly determined by the inter-
action between the localized spins and not by the Stoner parameter (Feiedel et al
1961, Slater 1974). In a straightforward application of the sDF formalism this has
to be described through the exchange-correlation functional. An alternative approach
of obtaining the Curie temperature, which demands less from the functional. would
be to calculate the excitation energies of the system, using the same formalism as
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for the ground state. The free energy, for instance, is then obtained by summing
over all excited states according to the formula F = —kT In[Z, exp(—E,/kT)]. This
sum includes states which differ by not having the same orientation of the localized
moments. The free energy would then contain effects of the spin fluctuations, e.g.,
it would give a high entropy.

In summary, it has been found that the LSD approximation gives a reasonable
description of the zero-temperature magnetic properties. Comparison with estimates
for the Stoner parameter extracted from experiments indicates that the errors in
the calculated values should be at most a few tenths of an eV. The results obtained
suggest that the LSD approximation should be useful for the calculations on transition
metal systems at T = 0.
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Appendix 1

In a spin-polarized system the potentials for spin up and spin down electrons are
different, and the wavefunctions are therefore spin-dependent. This effect (called (ii)
in §2.2) gives rise to a spin polarization. In the following this spin polarization
will be shown to be small compared with that caused by spin-flips (effect (1)).
Perturbation theory is used and the spin polarization is calculated to lowest order
in the net magnetization Am. For the wavefunctions of the paramagnetic state the
representation in equations (2.10 and 2.11) is used. Orthonormality requires

Z C?‘m(kn) Cim (kn,) <kn[kn'>, = 5nn' (All)
) im
where

Cenlher'y, = f " 12 drer, ) DU ).

0]

To lowest order in Am the spin polarization due to distortions of the wavefunctions is

) = po) — () = Am > ¥ (M@Z

kn nEn €kn — €pn

Vi (W lF) + c.c.) (A1.2)

All terms in equation (A1.2) with n’ occupied cancel. Appendix 2 shows that it is a
reasonable approxmmation to assume v{f,(r) to be spherically symmetrical and utilizing
this approximation one gets

oCC unovce

m(r) = Am Z: Y lZ(cfm(kn’) c;mkn)

n'

(! |v35) kn

|
kn — €kn

Yinlr) Yicr) + C'C-) (Al1.3)
where

Ckn'luit kny = fo rt dr¢1(7‘»€kn')v?f)(") O, €xn).
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The orthonormality condition (Al.1) provides a relation between the coefficients
ckn). It can be used to replace all the coefficients with a certain | value in
equation (A1.3). As the bands considered are predominantly of d character, it is
convenient to remove all the terms with [ =

OCe unoce <kn ]U l)lkn>l

Z ) ) (sz (kn')cmikn)

n' l*Z

i () UET) + c.c.) (ALd)

where
Chn'\ogh |k = Chi'luitlkny, — Ckn'(off)[kny < Chen'|kn,/Chn'fkny, 2
For the spherical average {m(r))> of m(r) we obtain

A (c,,,, (knYeomtkn) S com (k' )k (Kn)
I'£2

COEF=D YD)

n' l$2

i Skrlvtilkny o C.C.) (AL.5)
€kn — Exn'

where ¢,¢, = ¢, — ({kn'lkn> )/ kn'lknd |- ;)$,¢,. For brevity the arguments of the

two functions ¢, r, €, and r, €,, respectively are omitted. The sum over R and

R’ (cf. equation (2.10)) disappears because the density in one single cell is considered

and because functions centred in different cells do not overlap.

The potential v, (r) is large in the regions of space where the d wavefunctions
are large. Therefore the integral <kn'[v{])tkn), is largest for [ = 2 and for | # 2 the
first term inkn'[v(})|kn), is neglected. Using er for the energy arguments it is assumed
that

Ckn'lv)lknyy = — {€plvfy)l€Ri=2 (A1.6)

where <er|t]7)ler>=2 = — I(er) is the expectation value of ¢{f, for the wavefunction
¢,(r, er). Numerical calculation shows that there are appreciable cancellations
between the two terms in (kn'ltff)lkn);. For €, and €, in the energy range of the
lowest six valence bands and for ! < 2 we find the absolute value of the left hand
side of equation (A1.6) to be overestimated by about 50-100 per cent. As the expec-
tation value of the spin polarization will be calculated, the spin polarization in the
d wavefunction region is particularly important. Therefore the last term in @,¢, is
assumed to dominate and the approximation

DT, € )OUT- k) = — P3(r, €8) (A1.7)

is made. Numerical estimate shows that this approximation, too. means that the
contribution of the wavefunction distortion to the Stoner parameter is overestimated
by about 50-100 per cent. The energy denominator in equation (A1.5) is the difference
in energy between an unoccupied and an occupied state and is always nonzero.
It is approximated by the d bandwidth W. This might be an underestimate of equation
(AL1.5). To get an upper limit for the sums over the coefficients ¢, (kn) the results
of a band calculation (Wood 1967) is used. For the d-like bands of Cu it has been
found that

Y lesm(kn) = 09 (AL8)

m
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Using Schwartz inequality one obtains
001 if both n and »’ are d-like

bands
| Y chlkn)ei(kn))? Z leumkn)1? Y lepdkm)? < (A1.9)
lIm Tn h.:nz 01 if either n or n' is a d-like
band

First the contribution to equation (Al.5) from the six lowest valence bands is
considered. It is assumed that the number of nonzero terms in the k sum equal
Nnp®nytote, where n)®® and n;"°® are the numbers of occupied and unoccupied states
per atom and spin in the bands n and »’, respectively. This overestimate gives

2A
{m(r)y < ll (€30 e ) (01 ngee s 17+ 01 ngeageee + 001 ng* ny™¢)  (AL.10)

Using the Calculated values for I(e¢) and typical numbers for n§*, ng® and W for
various transition metals equation (Al1.10) is found to contribute about 5-10 per
cent of the total spin polarization.

In the estimate of (Al1.5) only the six lowest valence bands were included. In
this way effects of different hybridization for majority and minority spin electrons
were taken into account. In addition, the functions ¢,(r,€) tend to contract (expand)
for the majority (minority) spin electrons. To include this effect fully one would
also have to include higher bands in equation (A1.5). Instead, an explicit calculation
on the function ¢,(r.€) for both spin states in iron has been performed. It is found
that the distortion of the radial wavefunction contributes only a few (1-3) per cent
to the band splitting.

In. e.g.. iron there is in the interstitial region probably a very weak spin polariza-
tion which has opposite sign to the net magnetization (Shull 1967). This negative
magnetization is supposed to be due to the above mentioned contraction of the
majority spin states towards the nuclei (DeCicco and Kitz 1967). It is, however,
not important for the splitting of the d bands as the d electrons are mostly in the
region of the very much larger, positive spin polarization.

It is concluded that the spin polarization due to the deformation of the wavefunc-
tions ¥/, is small and could be neglected in this calculation.

Appendix 2

In the derivation in § 2. the non-spherical part of the spin polarization was neglected.
This approximation is discussed here, assuming cubic symmetry of the metal.
Quite generally the spin-density can be written as

m(r) = {mfr) (1 + Z A1) Yl r)) (A2.1)

m

where {m(r)y is the spherical part of the spin-density. Due to the cubic symmetry
all A,,(r) =0 for [ < 4 (von der Lage and Bethe 1947). Terms with [ > 5 are very
small as the s, p and d parts of the wavefunctions do not contribute to such terms.
In addition, when we eventually take the expectation value of the spin polarization
in equations (2.7,13), the s. p, and d parts of the wavefunctions will not couple to
terms with [ = 5 in equation (A2.1). Thus only the [ = 4 terms are important and

= {mr)>[1 + flr) Kg1(F)] (A2.2)
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where

Kas(F) = VT Yaol#) +  SlYaal) + Yo _o(P]) (A2.3)

is a cubic harmonic introduced by von der Lage and Bethe (1947). In appendix
| we showed that the spin-density is essentially due to spin-flips of d electrons at
the Fermi surface. The spherical and non-spherical parts of the spin polarization
therefore have the same r dependence, described by ¢3(r,er). We can thus assume
f(r) to be just a number f. This number can be determined experimentally from,
e.g., neutron diffraction experiments.

Using the result (A2.2) for the spin polarization in equation (2.13 and 2.7) we
get the ratio between the spherical and non-spherical contribution to the band split-
ting of a state (kn)

o =S X Chnlhn)es k) [ 492 P40 (7) Yo (K. 6) (a24)

Using the explicit form for K (r) in (A2.3) we obtain

Fien = /\/ﬁ(3 Y. leam(kn)2ay, + 5 Recz,z(kn)c;_z(kn)> (A2.5)

where g, = 1 ifm =0, —%if |/m =1 and ¢ if |m = 2. If a state contains fractions
04 + x;, and 06 — xi, of functions with E, symmetry (3z% — r?, x? — y?) and Ty,
symmetry (xy, yz, zx), respectively

= (5//3/21) Xt (A2.6)

Estimates from neutron scattering data (Shull 1967) gives that f < 02 for Fe,
Co, and Ni. For pure E, and T,, states this gives r < 0-13 (E,) and r < —0:09 (T,,).
The effects of the nonspherical spin polarization may therefore be of importance
when calculating for instance the Fermi surface. In this paper, however, only integral
properties of the band splitting are considered and for these there are large cancella-
tions between states with positive and negative r. For instance, to derive the stability
criteria in § 2.4 the magnetization Am due to an external magnetic field is considered.
From equation (2.1) one gets

1
Am=n, —-n_ = NkZ [f(€n+ — e H) ~ flewn- + s H)] (A2.7)
If H is a weak field the Fermi-Dirac function can be expanded
— C flewn)
A = Y= B Hen) (1 + (51, 20 ) — 2] L2

However, the average of x,, over the Fermi surface is ., 21 f/5 and

cfle)
de

Am = (— AmIle) (1 + [2) — 2unH) J' ) N(e) de (A2.9)

A non-zero magnetization can be obtained in the limit H = 0 if the Stoner parameter
satisfy

Iepy(1 + f7) fj a—J;(f—)N(e)de +1=0. (A2.10)



Band model for magnetism of transition metals 605

This is the criteria (2.16) except for the factor (1 + f2). Thus in this case the non-spher-
ical part of the spin-polarization effectively increases the Stoner parameter with at
most four per cent.

Appendix 3

In our caiculation of I(er) in equation (2.15) we have to know the electron density
p(r) and the radial d wavefunction ¢,(r, er). For the electron density we have used
the spherical average of superposed atomic densities. The atomic densities calculated
by Herman and Skillman (1963) have been used. An electron density obtained from
a full selfconsistent band calculation would give only a small change in the result
for I(e¢). For most elements results for the wavefunction are not available and we
have therefore estimated it in various ways. For V and Fe we have solved the radial
Schrédinger equation with potentials from band calculations by Yasui et al (1970,
1973), respectively. For Co we have used the renormalized atom result of Hodges
et al (1972). Finally. for Ni. Pd. and Pt we have utilized the proximity of the Fermi
level to the top of the d band and the fairly strong binding of the electrons, which
implies that the wavefunctions resemble the atomic ones. As the wavefunction at
the top of the d band is approximately zero at the Wigner—Seitz radius, we have
smoothly changed the atomic wavefunctions to satisfy this condition. This modifica-
tion of the wavefunction changes I(er) by at most ten per cent, which could be con-
sidered as an upper limit for the uncertainty in I(er) due to errors in the wavefunction.
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