“Tight Binding” Method: Linear Combination of Atomic Orbitals (LCAO)

W. E. Pickett
(June 6, 1999)

This write-up is a homemade introduction to the tight binding representation of the elec-
tronic structure of crystalline solids. This information is important in the parametrization of
the band structures of real solids and for the underlying character of model Hamiltonians for
correlated electron studies, as well as for other uses. Those interested in the parametrization
of band structures of real materials should consult the book by

D. A. Papaconstantopoulos,
Handbook of the Band Structure of Elemental Solids, (Plenum, New York,1986).

For the general TB method, one should consult the original classic work by

J. C. Slater and G. F. Koster, Phys. Rev. 94, 844 (1954).

I. INTRODUCTION TO TIGHT BINDING
THEORY

Since a crystal is made up of a periodic array
of atoms, it may seem peculiar that when we think
of Bloch electron wavefunctions in solids it is often
in terms of wavy modulations that don’t pay much
attention to just where the atoms sit. Indeed, in
simple metals and covalent semiconductors that is a
good picture: the crystal potential that enters into
the Hamiltonian is a smooth function and atomic
sites per se are not critical in the understanding (al-
though they are in the underlying description of co-
valent semiconductors).

There is in fact a common picture — the tight
binding model — that is based on the “collection of
atoms” viewpoint. It is most appropriate when elec-
trons move through the crystal slowly (or not at all,
as in insulators) and therefore ‘belong’ to an atom
for an appreciable time before they move on. The
electrons are in some sense tightly bound to the atom
and only hop because staying put on a simple atom
costs a bit too much energy. The TB model is not
readily applicable to simple ( free or nearly free elec-
tron) metals, but it is quite good for a wide variety of
other solids. Tt is interesting that covalent semicon-
ductors can be described well from either viewpoint.

A. Crystal as a collection of atoms

A good approximation for the electron’s poten-
tial V() in a crystal is the sum of atomic potentials:

V() = ZVat(F— R), (1.1)

where the sum runs over lattice vectors. We will not
worry about the considerable non-uniqueness of this

decomposition. For parametrization purposes, this
non-uniqueness is irrelevant (only the form of the
resulting parameters is relevant), while if the method
is intended for real electronic structure calculations,
the non-uniqueness often is used to make numerical
procedures as convenient as possible.

This potential is periodic by construction:

V(i+Ro) =Y Va(F+ R, — R)
R

where the change of summation index R R =
R — R, was made. (R, is a lattice vector.)

The crystal Hamiltonian is (7%/2m = 1)

H=-V?+V(7. (1.3)

Later we will generalize the situation to cover several
atoms in the unit cell.

B. Periodic array of atomic orbitals

Shouldn’t the electron wavefunction in the crys-
tal be related to the atomic orbitals, which satisfy

Hat¢n = (_v2 + Vat)¢n = 5n¢n-

We might try a linear combination

®,(r) = Z Gn (7 — E)a
R

(1.4)

(1.5)

is this a Block function that can be put in the form



®(7) = e Tug(M?

Indeed it is (prove it), but only for kE=0. We want,

and need, Bloch-like functions for arbitrary k within
the first Brillouin zone.

(1.6)

C. Bloch Sums

A much better choice of candidate for a crystal
wavefunction is to form the “Bloch sums” of atomic
orbitals, given by

B, (M =N"%Y eF Ry~ F).  (L7)
i

This is called a Bloch sum because it produces
a function that satisfies the Bloch condition for
wavevector k:

NiB, (7 +R,) =Y e Fp, 7+ R, — B)
7
= Z eik-Rd)n(F_ (R - éo))
7

_ Zeiﬁ-(ﬁ'JrR’a)%(F_ E’)

R!

= ¢F B N R R g (7~ B), (18)

SO
B, i (P + Ro) = e*F B (). (1.9)

This result is equivalent to the Bloch form. (Prove
it by manipulating it into the block form, and find
out what ug(7) is.)

It suffices to confine k in Eq. (1.7) to the 1st
Brillouin zone. If the & point were of the form ET +
K, where k, (the reduced wavevector) is in the 1st

Brillouin zone and K is a reciprocal lattice vector,
note that

(1.10)

for any and all lattice vectors R. (Why?)

D. Proceeding toward the eigenfunctions

For many solids there will be several types (s,p
or d) of atomic states in the valence region, and that
is why we have kept the index n. In the solid these
atomic states will mix with each other due to the
overlap of atomic orbitals on neighboring atoms (as
we will see). A Bloch sum of atomic orbitals itself is

not an eigenfunction for the crystal. It is important
to allow the valence wavefunction in the solid to be
some of each of the atomic functions, with the actual
amounts to be determined by solving Schrédinger’s
equation. Thus we try expressing the electron wave-
function in the crystal as a bit bn,E of each of the
Bloch sums,

P () = Zb

where the coefficients b gives the amount of Bloch
sum B, in the crystal wavefunction. The Bloch sums
become the basis functions that we express the wave-
function in terms of.

Now we want to learn how to find the wavefunc-
tions. The condition is that they be solutions of the
Schrédinger equation

Hd}l; = 5131/’13-

The eigenvalues €; will be the energy bands of the
crystal. But how do we solve for £ and the coeffi-

cients by, (k)?

B, (), (L11)

(1.12)

E. The matrix equation

In quantum mechanics generally, a good try is to
take matriz elements (integrals between basis func-
tions) and reduce the problem to a matrix equa-
tion. In this case, the thing to do is to multiply the
Schrédinger equation on the left by another Bloch
sum B* mE and integrate over the crystal. (Note that

we have not chosen a Bloch functlon corresponding
to another wavevector &' # k. Why didn’t we do
so?)

The result is

> Hp o ()by (F) kZSmn E)b,(k), (1.13)
Hppn(E) = / B* (MHB, (M), (1.14)

and
o) = [ B (7)1, (1.15)

These matrices are called the Hamiltonian matrix
and the overlap matrix, respectively, where m and n
are the matrix indices. Writing the matrices implic-
itly (without displaying the indices), the equation
becomes

(1.16)



or

{H(F) - egS(R)}o(k) =

This is a linear algebra problem (generalized
eigenvalue problem), but we have to know what the
matrices H and S are.

(1.17)

F. The H and S matrices

Well, we never said that this wouldn’t get a little
messy. However, the messiness does clear up soon.
Substituting in the Bloch sum forms for B}, and B,
within the integral, we have the expression

—1\2 Z ei/-c‘-(ﬁ2*é1)
Aot
/ 62 (F— R ) Hopm (7 — o)

zk Ro—R
y X O,
Ri1,R»

Hpn(F) =

(Ry — Ry).

Because the Hamiltonian is cell periodic, the matrix
element on the right hand side depends only on the
difference between R} and ﬁl. We can then change
the summation index ﬁz to Rz — 1%1 = R, and the
index B no longer appears on the right hand side.
Then the sum over R, just gives the factor N, the
number of unit cells in our “crystal.” Then we ob-
tain

Hun(B) = 3 €* R H,, o(R).

R

(1.19)

There should be no confusion between Hm,n(lz) and
Hm,n(R') in practice; in fact, they are lattice Fourier
transforms of each other.

G. The Real Space TB Matrix Elements
The expression for the real space integral is

o) = [ 6,@Hon -, (120)
i.e. it indicates the amount by which the Hamil-
tonian H couples atomic orbital ¢,, on the site at
the origin to the atomic orbital ¢,, that is located at
site K. Physically, Hm’n(R’) is the amplitude that an
electron in orbital ¢,, at site R will hop to the orbital
¢m at the origin under the action of the Hamiltonian.
One limit is easy to see: if |R| is so large that either
one or the other of the orbitals is vanishingly small

(1.18)

everywhere (no overlap), then the integral is negli-
gible. Thus we can confine ourselves to values of R
that connect an atom to only a few near neighbors.

All of this discussion applies as well to S, by just
removing the Hamiltonian H from inside the inte-
gral. S, n(ﬁ) in fact is called the overlap of ¢y, ()
and ¢, (F— R). Note that, if the orbitals are normal-
ized (as is always possible, and is always assumed),
the Sp,m(0)=1 for all m, i.e. the diagonal elements
of S are unity.

H. Several atoms in the unit cell

So far, the notation has been limited to a ele-
mental crystal. More generally, one encounters com-
pounds where there are various atoms in the cell,
which can be labelled by their position 7; with re-
spect to the origin of the cell (B). Then the basis
orbitals are

bmisk = bmi(F— R — 7).

Then, generalizing from the Bloch sum defined in
Eq. (1.7), one has the basis Bloch sums

Bo7) = N7H Y e B g 7~ - 7).
R

(1.21)

(1.22)

Then, instead of Eq. (1.18) we obtain

Hyin,j (k)

x [ 6,7~ B~ B HG,(7~ Fo - 7)

_ 1 ik (7 —75) ik-(Bo—R1)
= e Y ettt

Rl,ﬁg
X Hpinj (R +7 — Ry — 7)
— —zkn ZHmzn,] k ) ik-Tj
=e ﬂH;; i (BT, (1.23)

Here the notation in the next-to-last line has been
shortened using
Hynin,j(R) = Hunyign g (B+ 75 = 7). (1.24)
The overlap matrix behaves in an exactly analogous
way.
Eq. (1.23) can be viewed as the matrix H°(k)
transformed by the unitary transformation



Um,i;n,j (];;) = iE.Fj(s

which can easily be shown to obey the unitarity con-
ditions

(1.25)

n,m(si,ja

Ut =1=0"'0. (1.26)
However, a unitary transformation of a Hermitian
matrix does not affect its eigenvalues, but merely
transforms the eigenvectors. So, unless there is some
specific reason for doing so, the phase factors in the
last line of Eq. 1.23) (i.e. U) can be disregarded.
Looked at the other way, the one may include any
additional unitary transformation that one desires.
There are occasionally good reasons for making the
transformation — for checking various aspects of the
code, for example, or more importantly for reducing
the secular equation to a real equation in cases where
there is a center of inversion in the crystal but the
original choice of orbitals produced a complex secu-
lar equation.

II. APPLICATIONS OF THE TIGHT
BINDING MODEL

A. Single Site Terms

It may not have been obvious, but the mathe-
matics is finished; the problem has been solved. Ob-
taining the energy bands ¢; (in general there will be
several bands of them, labelled 5,;’”) and the expan-

sion coefficients b, (k) of the wavefunctions amounts
to solving the equation (1.16) or (1.17), with the
matrix H given by Eq. (1.19) and S given by an
analogous expression:

Smn(F) = N~2 3 e Fa-Rog, (R, — Ry)
Ry Ry

=3 R RS, u(R). (2.27)
7

First we will look at the B = 0 terms, where
both orbitals are on the same site (at our origin).
Now it is helpful to write the crystal Hamiltonian as
the atomic Hamiltonian for the atom at the origin,
plus the potential from all of the other atoms:

—

H=-V?+Vu(") + Y Vu(7 = R)
R+0
= —V2+ VP + VP + Y V(P — R)
R+0
= HataSPh (F) + AV(F)

The integral results primarily from the first part,
which gives the “atomic” eigenvalues {e,} for a

(2.28)

spherical atomic Hamiltonian H*?". Then because
atomic orbitals on the same atom are orthogonal to
each other, the on-site matrix element is

/ 64 (N Hat (90 (7) = Enbmy  (2:29)

i.e. just the atomic eigenvalue.

B. Crystal Field Splitting

The quantity AV () in Eq. (2.22) is not well
specified, but we do know that it has the symme-
try of the atom in questions (defining the origin in
this equation). This symmetry is never spherical in
a solid, but discrete, such as a mirror plane (m), a 3-
fold rotation in an axis containing inversion together
with a mirror plane (3m), etc. This crystal field, that
is, the non-spherical potential that arises because the
atom is in a crystal, will split some eigenvalues that
would be degenerate in a spherical potential. The
most common such situation is for the five d orbitals
in a cubic crystal field, which are split into the three-
fold representation called to, (xy,yz,2x) and the
twofold representation known as e, (2% —y?,322—1).
Crystal fields are also very important for 4f and
5f ions, where the designation may become more
complex because intra-atomic coupling (correlation)
is important. Although not widely recognized, the
oxygen ion in an axial site (such as in the perovskite
structure) has crystal field split p levels: twofold
(z,y) and a singlet (2). What this means is that
instead of a single on-site (“atomic”) energy &4 for
a transition metal ion in a cubic site, one has two
energies £¢,, and &.,, or even more disticnt ones if
the symmetry is lower.

C. Three Center vs. Two Center

A general Hamiltonian matrix element in Eq.
(1.20) contains atomic potentials on a third atom,
besides the sites upon which the orbitals are cen-
tered. The general form of the matrix elements then
contains three center integrals. Slater and Koster in-
troduced, and advocated, the use of the two-center
approzimation (2CA), in which three center con-
tributions to the parameters are neglected. There
had already been suggestions that such three center
terms were negligible and, while pointing out that
they are not negligible in a serious calculation (borne
out by many subsequent studies), SK suggested that
for the purposes of parametrizing information (from
experiment or from band calculation) a 2CA is likely
to be reasonable. Table I in their paper provides the
expression for s, p, and d matrix elements in terms of



two center integrals, denoted (sso), (pdr), (ddd), etc.
The 2CA is very widely, almost universally, used.

As an example of the validity, or lack thereof,
of the 2CA, we consider the case of Nb studied by
Pickett and Allen. [1] They performed a full three
center fit to the augmented plane wave bands of L.
F. Mattheiss for Nb (also Mo) at 55 k points in the
irreducible zone, using an s + p + d basis set (9 x
9) matrix, and including parameters out to third
neighbors. (Several of the 31 parameters are found
to be negligibly small.) As a test of the 2CA in
Nb, we can look at the pd parameters for nearest
neighbors in the bce lattice, which lie along (111)
directions. The values of the independent, paramters
(in mRy), together with the expression in the 2CA,
are

1 1
—42 = H, ,, = —(pdo) + —=(pd 2.30
ay = 3(pdo) 3\/3(1970 (2.30)

1
+16 = H, 42,2 — 0(pdo) + —=(pd 2.31
22y (pdo) 3\/3(1077) (2.31)
51 = Hyy. = ~(pdo) — —(pdr).  (2.32)

=2l =Hy;,, —(pdo) — —=(pdm). .

Since the 2nd equation determines (pdw) = 28 mRy
(= 0.38 eV), the other two equations can be used
separately to “determine” (pdo). The two values
thus determined are -142 mRy and -131 mRy. Since
these do not differ greatly, one can use the 2CA with
(pdo) = -136 mRy (the mean) with acceptable loss
of accuracy.

The dd parameters are the crucial ones in Nb.
For nearest neighbors there are four three center pa-
rameters. Denoting (ddo), (ddr), (ddé) by S, P, D,
respectively, the corresponding values and 2CA ex-
pressions are given by

1 4
1 1 2
2 2
—31=V3H,, 3.2 ,2 = 0S — sP+3D  (235)
2 2 1
+31 = H3z2—r2,322—r2 — §S+ §P+ ED (236)

The 3rd of these equations has been multiplied
through by /3 to facilitate solution by elimination
using various combinations of the equations. Sub-
tracting the 2nd from the 1st gives

1 2
13=0S+-P+:D
+ +4P+3D;

which can be combined with the 3rd and 4th
equations (separately) to produce the solutions:

{P,D}={xx,yy} and {P,D}={xx,yy}.

(2.37)

D. Introducing the usual terminology

Now we consider an intersite term. However,
we do not intend here to do a serious calculation;
rather, we want to identify the important quantities
(often called parameters) and choose likely values
and learn some things about the general behavior of
the electronic system. In fact, we’ll just define a TB
parameter

timn(R) = Hpn(R) (2.38)
because t is the usual notation for these integrals.
This integral (see above) indicates how easy it is for
an electron — whose behavior after all is determined
by the Hamiltonian — to “hop” from orbital n on
site R to orbital m at the origin. The {t} constants
are called hopping parameters or hopping amplitudes.
The on-site (E = 0) term was given in Eq. (2.23),
which we repeat here to jog the memory:

tmn(0) = nmn, (2.39)

which is the atomic energy level corresponding to
orbital ¢,,.

For the overlap matrix we have similarly the no-
tation

Smn(R) = Spmn(B); $mn(0) =0mn.  (2.40)

The latter result expresses the orthonormality of
atomic orbitals.

E. Example: s functions on a simple lattice

The simplest case to consider is when there is
only one, s-like function on each atom at sites in a
Bravais lattice (i.e. one atom per cell). Then the TB
matrix equation is a 1 x 1 equation, which gives a
direct expression for ;. Since the atomic orbital is a
spherically symmetric function, there is no aggravat-
ing angular dependence to worry about in Eq. (1.20)
for the hopping parameters, and in fact the value of
the hopping parameter is the same for all equivalent
neighbors — all 1st neighbors have the same value,
all 2nd neighbors have the same (different, usually
smaller) value, etc. Let’s look at some cases.



F. 1D linear chain of atoms

Taking some atom as our origin, we have two 1st
neighbors, at +a, and both have the same hopping
amplitude ¢;. Then the sum in Eq. (1.19) contains
the on-site term and those from neighbors:

HooK) = £+ 1 3 ci#R
R

=g, + t1 (e + e7 kR

= g5 + 2ticos(ka). (2.41)

Likewise,

Ss.s(k) =14 s1 Z e =1+ 2sycos(ka). (2.42)
R

The solution to Eq. (1.16) is immediate:

_ €5+ 2ticos(ka)

= 2.43
T TT 2s1cos(ka) (243)

It is very simple to add the effects of interaction with
2nd neighbors, which lie at +2a from the reference
atom (“at the origin”). The sum over the complex
exponential factors leads to the result 2cos(2ka).
Denoting the corresponding integrals by t2 and ss,
the energy band dispersion relation becomes

_ €5+ 2ticos(ka) + 2tacos(2ka)
1+ 2sycos(ka) + 2s5cos(2ka)

€k (2.44)

G. General Features

It is time to reflect. Eq. (2.29) is the simple 1D
tight binding band that arises commonly in modelling
the behavior of 1D materials. Actually, it is almost
always even simpler, because the s overlap parame-
ters are usually neglected for further simplicity. This
is discussed in the next subsection. However, at the
cost of a little messiness in deriving the expression,
we have obtained a very simple form of € vs. k dis-
persion relation . In the simplest case it has only
a single parameter, t; = t, and by construction —
because the wavefunctions were built to satisfy the
Bloch condition — it has precisely the correct peri-
odicity. These are two general features of the TB
representation: (i) simplicity, and (ii) expressions
involving trig functions that automatically have the
correct periodicity.

Another physical requirement is that the param-
eter snm(ﬁ) in Eq. (2.26) cannot be greater than
unity in absolute value, so there can be no problem
with the denominator vanishing in Eq. (2.29) or

(2.30). In fact, to be reasonable, the various overlap
parameters sm,n(ﬁ) should be small in magnitude
compared with unity (they may be of either sign).
The “self overlap” term is unity by normalization,
and putting one of the orbitals on a different site
must reduce the magnitude of the overlap. Hence
the denominator in Eq. (2.29) should always take
the form of a correction, an adjustment, and not give
very large alteration of the denominator, or else the
description loses its realism.

If the overlap matrix is approximated by the unit
matrix, so that Eq. (2.29) becomes

Ex = €5 + 2t1cos(ka), (2.45)

the interpretation of the parameters occurring in the
dispersion relation is simple. The band minimum
and maximum are £, — |2¢;| and £, + |2t;| respec-
tively. This means that the center of the band lies
at £, and the bandwidth W is given by

W = 4ty (2.46)
This generalizes to square/cubic lattices in 2D and
3D, where the bandwidth is given by 2z|¢1|, where
z is the usual notation for the number of nearest
neighbors. This can be changed somewhat by 2nd
neighbor terms, but the rule-of-thumb is this simple
relationship between bandwidth, coordination num-
ber, and nearest neighbor hopping amplitude:

W = 2z(t]. (2.47)

H. Character of the Overlap Correction

We can obtain insight into the effect of includ-
ing the overlap matrix S by expanding Eq. (2.30),
assuming s, sy are small. We obtain, shortening
cos(ka) — Ci(k), cos(2ka) — Ca(k),

er ~ (g5 + 2t1C1 (k) + 2t2Co(k)) x
(1 —251C1 (k) — 252Co(k))
=¢e5+ 2(t1 — 51)C1(k) + 2(t2 — 52)Ca (k)
—4t151C1 (k)? — dta55Co (k)?

—4(t182 + tgsl)Cl(k)Cg(k). (248)

The effect is to add more wiggles (Fourier com-
ponents) into the dispersion relation. Also, it
doesn so in a somewhat different way than simply
adding more neighbors (more t’s) into the expan-
sion. Probably it is more efficient, when using the
TB parametrization to fit given complicated band
structures, to use an overlap matrix rather than sim-
ply add more hopping parameters, but this question
has not really been studied systemmatically.



III. THE OVERLAP MATRIX

The overlap matrix deserves comment before we
continue. In a large majority of cases where the TB
method is used for simplification or for pedagogical
reasons, the overlap matrix is “set to unity”:

Smn(R) = ém,néé’(j- (3.49)
It is important to understand why, first, this is in
principle a reasonable thing to do, and second, it
leads not only to simplification but to additional ap-
proximation.

A. Lowdin Orthogonalization

Let us return to Eq (1.16),

Hb =S, (3.50)
where the notation has been simplified even further
by dropping the k argument on each quantity, but
adding a “hat” on the matrices. We can make a
transformation that effectively eliminates S.

This is done by introducing the square root, de-
note it S %, of the overlap matrix S:

§=2838% = (§3)2, (3.51)

We will also need the inverse of the square root of

S (equal to the square root of the inverse):

8287 =1=879"7. (3.52)
Aha! T hear you say. Square roots and inverses of
matrices do not always exist. That is true; however,
S is a positive matriz from its physical and mathe-
matical definition. This means that all of its eigen-
values are positive, in which case its square root and
its inverse do exist. These matrices can be obtained
by (1) performing the similarity transformation that
transforms S to a diagonal matrix, (2) taking the
square root or the inverse of all diagonal elements
as desired, and (3) performing the inverse similarity
transformation. It is readily shown that the corre-
sponding matrices obey the properties given above
for the square root or the inverse. We don’t say
more about this because for now it is only necessary
to know that it is possible.

With these matrices we can now carry out the
following steps:

Hb =¢Sb
HS 282b=£8232b
(S~ 2HS 2)(S7b) = £(S2b)
Hb = ¢b, (3.53)

where
H=53HS 3. (3.54)
The generalized eigenvalue problem Hb = £8b has
been transformed into a conventional eigenvalue
problem Hb = eb with the same eigenvalues. The
eigenvectors, which contain the information about
how much each atomic orbital contributes to the
eigenfunction, have been changed, and the Hamilto-
nian matrix that needs to be diagonalized has been
transformed. This observation, together with the
lack of any overlap matrix in the new equation, in-
dicates that the transformation
b=S%b (3.55)
reflects a transformation of the underlying atomic
orbitals into a set of mutually orthogonal orbitals,
even if they were originally residing on different
atoms. This orthogonalization procedure is called
Lowdin orthogonalization, after the eminent quan-
tum chemist Per-Olov Lowdin (pronounced love-
dean).

What this orthogonalization procedure does is to
add in (either sign is possible) to any given orbital
¢;(7) a fraction of every other orbital that it is not
orthogonal to. The amount it must mix in is related
to the corresponding element of Sy, ,(E). The ef-
fect is to make each of the orbitals more spread out,
and thereby to increase the number of matrix ele-
ments that are needed in H compared to what were
needed in H. This fact is bothersome and tends
to get “forgotten,” because the objective of the TB
formalism is simplicity, and therefore few parame-
ters. The conventional applications of TB theory for
(semi)empirical studies therefore usually presumes
(“we assume, for simplicity”) that the original local

orbitals {¢, (¥ — R)} have been orthogonalized.

If the off-diagonal elements of S (i.e. the over-
laps) are small, an approximate square-root matrix
can be obtained by expansion. Writing

68=9-1, (3.56)
we can write
a1 1.~ 1 .

This expansion is readily evaluated without diago-
nalizing the overlap matrix.

IV. RETURN TO APPLICATIONS
A. 2D Square Lattice of s Orbitals

Henceforward we neglect the S matrix, since
most of the rest of the world does so. For the square



lattice, the sum over nearest neighbors runs over the
sites (a,0),(0,a), (—a,0), (0, —a). The sum becomes

Z N Z eikzaj+ Z eikzap
R

j=%1 p==+1
= 2(cos(kza) + cos(kya)), (4.58)
and the dispersion relation is
ep = €5 + 2t1(cos(kza) + cos(kya)). (4.59)

Now, suppose we want to account for “hopping” to
the second neighbors at the points (+a,+a) with
amplitude t2, we take advantage of e?T% = e%e¥ to
get the additional term, and the band looks like

e = €5 + 2t1(cos(kza) + cos(kya)) + 4cos(kza)cos(kya).

(4.60)

Once you do a few of these, the pattern becomes
simple. When you need to deal with atomic p or
d orbitals, the procedure becomes more intricate:
the ¢(R) factor depends on R and cannot simply be
pulled out from under the summation. But that is
another course.

V. COMMENTS OF FITTING OF
PARAMETERS

The tight binding hopping parameters (and
overlap parameters, if used) are commonly fit to
an independently calculated band structure. Denote
the parameters by a vector ¢ and the set of eigenval-
ues to be fit by {ex}, where K will include both &
and band indices. The mathematical problem is to
minimize the “residual” R

SR =6 gx|Ex(f) —ek]® = 0. (5.61)
K

Here gk is a weight to be chosen as desired (for
example, to fit eigenvalues around the Fermi en-
ergy more closely than elsewhere), and {Ek } are the
eigenvalues resulting from the TB secular equation,
which depend on the parameters.

Carrying out the minimization with respect to ¢
gives

ZQK(EK(E) - sK)VtEK(f) =0. (562)
K
Linearizing around & ~ f,:
Vi Ek () ~ Vi Ex (t,),
Ex () ~ Ex(t,) + (—t5) - Vi(Ex(to), (5.63)

leads to

—

> alBx(to) —ex + (F—1) - Vi(Bx (f)]

K
Vi(Bx(£) =0, (5.64)
which can be written in a matrix form
b+ (F—1,)-A=0. (5.65)
This equation can be transposed to
f=% —b-A"", (5.66)
where b and the matrix A are defined by
b=> " gEx(f,) — ex)ViEx (L),
K
(5.67)

Apg =Y 0k[ViEx (£)]p[ Ve Bx (£)]g-
K

The Hellman-Feynman theorem gives a simple
method of calculating the derivatives. Given the ma-
trix eigenvalue equation

H(k)|ka,t >= By |ka,t > (5.68)
where « is the band index, the derivative is
ViE; (1) =< ko, #|(V,H(K)) [ka, i > .  (5.69)

Since the Hamiltonian matrix elements depend lin-
early on the components of ¢, the derivative in this
last equation is trivial and can be evaluated exactly
by finite difference (numerically; of course, if the ma-
trix is in analytic form it can be obtained trivially).
A note to programmers: for Nb, where a 9x9 matrix
was used, with 31 parameters and 55 k points, there
are

9x 10

x 55 x 31 = 76,725 (5.70)

such derivatives!

Eq. (5.58) provides an iterative procedure for
fitting the parameters. Like all such schemes, it will
converge if the starting point is sufficiently close to
a good minimum. There will in general be many
local minima, and the criterion for a best fit may be
somewhat subjective as well. However, some study
of these problems (unpublished) seems to indicate
that non-uniqueness of the fit is not a big problem.
Although a converged result is certainly not unique,
restarting the iteration procedure in practice leads
to sets of parameters whose differences have little
physical significance, i.e. the large parameters are
fairly well determined.
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