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Recent observation of “colossal magnetoresistance” in
Lay—;Cay MnO3 and related compounds suggest the impor-
tance of orientational disordering of Mn magnetic moments,
especially near the Curie temperature. Several interesting
compounds even display non-collinear moments (NCM) in
their ground states. Although self-consistent local density
functional based treatments of NCM are already available
(within certain simplifications), it will be instructive to have
realistic tight binding methods to simulate the more complex
spin configurations. In this paper the process of simplify-
ing the ab initio density functional theory of NCM to tight
binding form is discussed. It is suggested that in the La-
based manganites, the e; moments on the Mn ion may not
be strongly coupled to the t2;, moments, and that these two
suborbitals may become non-collinear on the same ion. A
tight binding approach can model such a situation.
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is the non-relativistic Hamiltonian (Ai=1, 2m.=1) govern-
ing a collection of N electrons with coordinates {r;} in-
teracting with each other and with an external potential
Vezt. Summation over the spin coordinates of the elec-
trons is implicit. This is the standard Hamiltonian for
the study of condensed matter systems, and for real ma-
terials (i.e. excluding jellium and other model systems)
remains unsolved. Simplifications that allow progress run
between two extremes: (a) to reduce to a vastly simpli-
fied model system that retains a many-body interaction
which can be treated, and to hope that the model con-
tains some of the essence of the real system, or (b) to re-
tain much of the intrinsic complexity (structural features,
multiband nature, etc.) but to simplify the treatment of
interelectronic interactions, such as in an effective mean-
field treatment. Spin density functional theory (SDFT)
is a widely practiced, generally successful method of the
second type that has strong theoretical underpinnings.
1,2

The various ways that one can approach this problem
is nowhere more evident than in the theory of high tem-

perature superconductors during the past decade. The
two extremes mentioned above can be represented by (a)
simplification to a single (or three) band Hubbard model,
or perhaps to a Holstein-type polaron model, or alter-
natively (b) use of the local spin density approximation
(LSDA) to obtain a band structure, one-electron wave-
functions, and charge density. From both directions there
have been promising efforts to bridge the chasm between
the two approaches: extension of the Hubbard model to
multi-atom, multiband, extended models [3,4] in the case
of (a), and incorporation of many-body corrections using
a SDFT starting point [5,6]. These approaches must be
considered to be still under development, and are not the
focus of this paper.

The purpose here is to discuss further complications
that occur in the description of magnetism, specifically
the occurrence of non-collinear magnetic (NCM) states.
Such states occur in magnetic overlayers and sandwich
structures that display “giant magnetoresistance” and
are expected to be important in the manganite materials
exhibiting “colossal magnetoresistance.” Note the lack
of any overt spin dependence in the Hamiltonian of Eq.
(1); the implicit spin dependence arises because electrons
are spin—% particles, whose statistics and spin restrict the
nature of the solutions. Here we discuss the relationship
between the description of NCM magnetic configurations
in model Hamiltonians and within SDFT.

II. SDFT FORMALISM

A familiarity with SDFT will be presumed. The widely
used form of SDFT, in which one treats a majority
(1) and minority (]) magnetization densities m4(r) and
m,(r), is due to von Barth and Hedin. [7] (vBH) The
magnetization density is equal to gup times the spin den-
sity, where g2 is the electron g factor. [In this paper m
will denote the magnetization density in units of pp, or
equivalently, twice the spin density.] In fact, before sim-
plifying to collinear states, vBH outlined a generalized
spin-matrix [pg] density functional theory that specifi-
cally included the vector nature of the spin density. A
four-component 2 x 2 matrix S in spinor space,

S = {GO,Uz,Uy,UZ} = {00,5"} (2)

where & is the Pauli spin vector matrix and o, is the
2 x 2 identity matrix, spans the space with convenient



notation. The Kohn-Sham equations [2] become
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Coupling between the spin directions arises solely
through the magnetization dependence of the exchange-
correlation (XC) energy. The XC potentials are the
derivatives of the SDFT XC energy functional:

Uzc(r) = 6Eg;[(,’:.’)m]: gzc(r) = 6%;—4?;)7%] (6)

where the designation of Ewc is chosen to reflect that this
XC contribution couples to the spin as a magnetic field
would. The densities are given by contributions from
occupied states:

oce

p(r) = {n(r),mi(r)} =Y W (r)STa(r). (7)

In the conventional local spin density approximation
(LSDA) [7] Eyc[n, m] depends only on m(r) =| m(r) |, so
one rotates into the local frame where “1” is along mi(r),
the exchange potential is evaluated, and then applied to
the spinor O(r)={¢4(r),_(r)}. If the spin density ev-
erywhere points in one direction, a collinear spin state is
described (e.g. ferromagnetic or antiferromagnetic) and
spin 1 and spin | equations decouple. Where the spin
density deviates in direction, the two spin directions are
coupled and the eigenspinors are no longer spin-pure.

An expression for the total energy is

Eip = Y 0% ei — %ffd%d%’n(r')ﬁn(r) (8)
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i.e. the eigenvalue sum plus the XC energy, minus the
“double counting” terms. Expanding E,. and the term

containing I-;u around 7 = 0 and denoting the second
functional derivative with respect to 17i(r) as -1 I,. gives

E,.[n,m] = E,.[n, 0]
— 3 [ [ &@rdr'mi(r') - LLo(r',r) - 1ii(r)

+ O[m3], (10)

—/d3r7ﬁ(r) . gwc(r;n,rﬁ) =

//d3rd3r'm(r) . %Im(r, r') - m(r')
+0[m3]. (11)

The terms in both XC contributions to the energy that
are linear in 7} vanish by symmetry at m = 0. Janak

[8] has shown how the second functional derivative with
respect to m(r) arises in the Stoner enhancement of the
magnetic susceptibility, and a similar expansion in m(r)
has been used here. A point to note is that in large
moment systems, expansion around 7 = 0 may not be
realistic, and expansion in 7 around the magnetic state
should be considered.

If one then imagines variations in magnetic orienta-
tions where the change in charge density is negligible,
the energy is given (in schematic form) by

T o
Etot = Eo + Eband[m] + Zm . Iwc sm. (12)

The variation in band energy is crucial, which highlights
the importance of gaining some understanding of effects
of orientation of moments on this term. We return to
this point below.

III. GENERAL IMPLEMENTATION

The implementation of continuously varying non-
collinear spins has only recently been accomplished, by
Nordstrém and Singh [9] within LSDA. It requires im-
plementing the generalization of the exchange potential
given above, and then obtaining self-consistency in the
four-density p(r) ,i.e. n(r) and mi(r), rather than the
two densities n(r) and m(r) as in conventional LSDA.

The implementation of continuous 7i(r) is less both-
ersome than it appears. [9] As introduced by vBH, one
uses the LSDA functional (defined only for the magni-
tude m(r) of mi(r), by rotating at each point in space
into the local frame of spin quantization, evaluating the
XC potential vz.(n(r),m(r)), and then rotating back to
the global coordinate frame. In practice these rotations
become trivial. As shown by Sticht et al. [10] from the
continuity equation for the spin current,

T?L(T’) X bzc(r) =0, (13)
in other words, the vector XC potential and the mag-
netization must be locally parallel if they are non-zero.
Hence

- _ 0Egc[n, m]m

bz (r) (r), (14)
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and the evaluation of gzc is no more difficult than in
collinear theory.

The full SDF theory contains additional features. Vi-
gnale and Rasolt [11] prove that in general one must in-
clude an XC contribution to the vector potential to have
a consistent gauge invariant theory, which then includes
charge and spin current densities. This generalization
has not been implemented for any real material. The full
DFT theory includes effects due to the variation in the
orientation of 17, as well as the dependence on m(r) that



isincluded in LSDA. In the spirit of the Generalized Gra-
dient Corrections of Perdew and others, [12] one might
expect terms involving Vm, V x m, and V2, as well as
cross terms with Vn. Note that the functional will not
involve V-, which vanishes. [11] From the present view-
point, this full potential NCM theory provides a detailed
basis to suggest approximate schemes and to constrain
them properly.

IV. ATOMIC MOMENT APPROXIMATION

One simplification, which will be called here the
Atomic Moment Approximation (AMA), divides space
into spherical (atomic) spheres and assigns a spin di-
rection to each atom. This AMA, which is otherwise
a self-consistent LSDA calculation, has been used to
describe spin-spiral ground states and disordered local
moment configurations of several systems. [13-15] The
Kohn-Sham equation has the form

{[=V? + Vipr (N)]oo + Ve (1) - 73Ui(r) = &;4(r).
(15)

where V,,, and V,, are the spin-diagonal and spin off-
diagonal (exchange) potentials, respectively (recall that
Vspn contains an XC contribution, while Vg, is purely
XC), and éj is the direction of the moment at the j-

th atomic site. The configuration {C_;} can be varied to
minimize the energy. This description of NCM has been
used successfully during the past decade. [10,13-16]

Liechtenstein et al. [17] have used this method to study
the energy cost of spin reorientations. They show that
the change in band energy when one spin (77,) is rotated,
is of the Heisenberg-like form

SE =) Jo,j1iho - 1 (16)
J

for small rotations. For larger relative orientations the
angular dependence will vary from this simple form. For
several non-collinear spins, the variation in band energy
becomes more complicated and will depend on relative
orientations of three, four, ... atomic moments as well as
simple pairwise terms.

V. TIGHT BINDING MODELS

The AMA form of the Kohn-Sham Eq. (15) in the pre-
vious section directly suggests the type of tight binding
(TB) model that has been used by You and Heine [18]
to study the behavior of ferromagnetic metals near the
Curie temperature. Expanding the Kohn-Sham equation
in an atomic orbital basis (site j, orbital L=n,l,m), the
general TB Hamiltonian matrix elements are

1. )
SBiLgL 0 (17)

hjL,jin = tjL,ji0 oo —
Here A is the matrix element of V,,{ in Eq. (15) and has
the obvious interpretation of the “exchange splitting” of
bands (splitting between spin 1 and spin | in the local
frame).

It is conventional to presume that the exchange split-
ting is proportional to the magnetic moment: A = I'm.
In the general case interatomic coupling can be included
so the Hamiltonian matrix elements become

hjvg o =tjL,j 100 = 5me - L gu - 0. (18)
Here the Stoner exchange parameter I is a 3 X 3 tensor
in Cartesian space. The on-site and hopping amplitudes
are included in ¢. The corresponding energy is [18,19]

occ

S 1 R 5
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(19)

The second term corrects for the double-counting of in-
teractions in the eigenvalue sum. This form of energy ex-
pression is considerably more simplistic than the LSDA
expression in Eq. (9). Note, however, that it is exactly
the same form as Eq. (12), which results if charge fluctu-
ations are negligible. (Charge fluctuations can be mod-
elled with a Hubbard-like term if desired.)

This form of tight binding one-electron equation has
spin-independent hopping, and all coupling between
spins is from an “exchange” splitting. Hopping ampli-
tudes depending on the relative spin directions of the
two sites have been suggested, [18,19] but it is more diffi-
cult to implement and must be formulated so that spin-
dependent hopping vanishes as the magnitude of the spin
vanishes.

The specification of I presumably will be fixed by com-
parison with LSDA calculations. Lorenz et al. [16] re-
port that, given their method of identifying I, its value
is essentially constant at a value of 0.95 eV /ugp for a
variety of 3d and 4d metals showing spontaneous or
induced magnetism. On the other hand, Singh’s cal-
culation [20] for the itinerant 4d ferromagnet SrRuOj;
gives the value of 0.4 €V /up for that compound (where
m = 1.6up/cell). For the ferromagnetic phase of an or-
dered supercell of Lay/3Ca,/3MnOs, Pickett and Singh
[21] found a value of 0.70-0.75 eV /up for the Mn ty
states. The e, value might differ, but within LSDA the
difference should be small because non-sphericity around
atoms is relatively minor. These results indicate that I
is an atom-dependent, and probably material-dependent,
property. In fact, both total ferromagnetic moments and
band splittings are a property of the crystal as a whole,
and an accurate treatment may require accounting for
this fact by assigning a (perhaps small) value of I to in-
tervening atoms such as oxygen that have been ignored
up until now.



The simplicity of the tight binding language, and es-
pecially its explicit separation into orbital contributions,
allows an interesting possibility: the contributions to the
moment from different orbitals on the same atom may
be non-collinear. Within the LSDA method, all orbitals
experience a local exchange potential V,, which is mildly
non-spherical at most (applications to NCM so far, ex-
cept Nordstrém and Singh [9], have assumed spherical
potentials). This weak non-sphericity is felt to be one
defect of the local density approximation that renders it
unable to describe the antiferromagnetism of the layered
cuprate insulators. [22]

Some simplifications render certain phenomena trans-
parent. Assuming, as envisioned in the early theories of
Korenman, Murray, and Prange [23] and Hubbard [24]
that

(i) I is site diagonal,

(ii) I is constant within the shell being treated (e.g.
same for ey and ¢a4), and

(iii) the moment is unchanged in magnitude as it re-
orients,
the change in energy due to the rotation of a moment
can be obtained. The %I m? term is constant if the mo-
ment is unchanged, hence variations in energy, reflecting
the intreatomic coupling of moments, come entirely from
the band energy. This fact emphasizes that the variation
of the band energy with spin orientation is important to
understand. Kiibler and coworkers [10,15] have noted in
some detail the changes in the band structure that result
from spiral magnetic structures.

VI. POSSIBLE RELEVANCE TO MANGANITES

The manganite perovskites seem to be a propitious
system for intraatomic non-collinear moments to arise.
It seems clear, on phenomenological grounds and ac-
cording to calculations [21,25,26] so far, that in the
La;_,Ca,; MnQOs system (and similar ones), the majority
ta4 states are completely filled. This is often treated, viz.
the “double exchange” picture, as a core subsystem with
a full moment of 3 up. If in Eq. (18) it is supposed that
m represents (only) those ¢z, spins and that they can
be treated classically (and denoted by S;), the result is
the “double exchange” Hamiltonian, [27,28] with matrix
elements

1.2 .
hjv g = tipj 100 — 5155 G 9j40L1- (20)

Sec. II provides a way to calculate (or at least estimate)
the “Hund’s rule” coupling constant 31.

In CaMnOs there are no other (valence) electrons, and
the material is an antiferromagnetic insulator. The CMR
regime is closer to the LaMnQO3 end, where there is one
more (e4) electron, which is a potential itinerant carrier.
Electronic structure calculations [21] indicate that the
structural distortion, which is mostly a Jahn-Teller ef-
fect, is instrumental in creating the semiconducting gap

of LaMnQOs. Interestingly, the calculated moment of 3.4
B is noticably lower than the Hund’s rule value of 4 pup.
This can be accounted for within LSDA by hybridiza-
tion of the e, states with the neighboring O p states,
which reduces the participation of the e, states in the
occupied bands and thereby reduces the moment. How-
ever, intra-atomic non-collinearity is also a possibility:
the e, contribution to the moment might not be parallel
to the ¢, moment. The lattice distortion of LaMnOs,
with its low Mn site symmetry, strongly affects the elec-
tronic and magnetic structure and provides a mechanism
for breaking the cubic symmetry that otherwise would
oppose intra-atomic noncollinearity. The calculation by
Nordstrom and Singh [9] of intraatomic NCM in ferro-
magnetic Pu arises from a different mechanism (spin-
orbit coupling).

An alternative to LSDA has been proposed [25,26] as
being necessary to produce a reasonable description of
the properties of X MnOs compounds. This alternative
is the LSDA+U approach, [29] in which a Hubbard-like
term U is added to the LSDA energy expression. The
effect of this correction is to lower the eigenvalues of oc-
cupied Mn d derived states, raise the eigenvalues of unoc-
cupied d derived states (by -U/2 and +U/2 respectively,
for pure d states), and encourage integral occupation of
the Mn d states. From the current viewpoint, the vari-
ant of LSDA+U introduced by Solovyev, Hamada, and
Terakura [25] is suggestive. They introduce two Coulomb
repulsion constants, Uy, >U.,,, which differ (they argue)
because the more localized ¢, electrons are screened by
the less localized e, electrons, but not vice versa. This
distinction, if correct, indicates a large difference in the
dynamical behavior of ¢34 and e, states, and makes intra-
atomic non-collinear contributions to the moment plau-
sible.

However, there are features already within the LSDA
calculations on manganites [21] that could encourage in-
traatomic NCM. The exchange splitting of the Mn d
states leads to a strong spin-dependence of the hybridiza-
tion with O p, since the majority d bands are lower in
energy and overlap the O p bands. In addition, the oc-
tahedral field splits the t»4 and e, states, so moment re-
orientations will lead to different band structure effects,
and thus different energy changes originating from these
two subbands. A tight-binding approach is ideal for ob-
taining an understanding of such tendencies.

SUMMARY

In this paper the relationship between the description
of non-collinear magnetic configurations from ab nitio
SDFT to a tight binding model has been outlined. The
tight binding model allows the exploration of possibil-
ities, especially intra-atomic non-collinearites, that are
more difficult to explore (or might not arise) within a lo-
cal spin density treatment. It is suggested that the per-



ovskite manganites provide a promising system to look
for such phenomena. Such studies are in progress.

Experience with tight binding models of NCM will
also be useful for implementation the theory of spin dy-
namics by Antropov et al. [30] The description of elec-
tronic states and transport in a system of disordered spins
will in any case be required to understand the new phe-
nomenon of colossal magnetoresistance (see [21] for ref-
erences).

I am pleased to acknowledge several instructive dis-
cussions with L. Nordstrém, D. J. Singh, and V. P.
Antropov, and helpful comments on the manuscript by
I. Solovyev.
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